Statistica Applicata - Italian Journal of Applied Statistics Vol. 35 (1)
doi.org/10.26398/1JAS .0035-005

welo: AN R PACKAGE FOR WEIGHTED
AND STANDARD ELO RATES

Vincenzo Candila'
Department of Economics and Statistics, University of Salerno, Fisciano, Italy

Abstract This paper describes the characteristics of the welo package, dedicated to cal-
culating the weighted and unweighted (or standard) Elo rates in tennis. The Elo rates
are one of the most accurate proxies of the strength of players/teams. In the standard
version, the Elo rates are dynamically obtained using the outcome of the two players. In
the recent paper of Angelini et al. (2022), the weighted version of the Elo rates (labeled
as WElo) has been proposed in order to take into account not only the outcome of the
matches but also the scoreline. The present work illustrates the main features of the R
package, which allows the user to easily and quickly obtain the WElo and Elo rates, as
well as the predicted probabilities of winning.

Keywords: Elo rates, Weighted Elo rates, R, Tennis, Betting.

1. Introduction

The attention of the literature on sport’s outcome forecasting has largely increased
over the last few years. Many contributions focus on soccer (see, for instance,
Angelini and De Angelis, 2017; Koopman and Lit, 2015; Mattera, 2021, among
others) and tennis (see Arcagni et al., 2022; Lisi and Zanella, 2017, and refer-
ences therein). Recently, Kovalchik (2020) has improved the Elo rates for tennis
by taking into account, for the first time, the margin of victory. The Elo rates
were proposed by the Physics Professor Arpad Elo in 1978 (Elo, 1978) for the
rating of chess players. Since then, the Elo rates have been applied in a variety of
sports: rugby (Carbone et al., 2016), soccer (Hvattum and Arntzen, 2010; Leitner
etal., 2010), American football (Ryall and Bedford, 2010), and tennis (Kovalchik,
2016; Kovalchik and Reid, 2019). Angelini et al. (2022) have further extended the
Elo-based models in tennis by weighting the Elo rates according to the number of
games or sets won by each player. If the standard Elo rates take only into account
the outcome of the match (that is, if a player has won or lost), the recently pro-
posed Weighted Elo (WElo) rates of Angelini et al. (2022) instead are also based

lycandila@unisa.it

on the final scoreline. This additional feature has provided a large benefit in us-
ing the WElo rates to calculate the probability of winning, compared to a set of
the competing models”. The present paper aims at illustrating, in detail, all the
tools of the welo package, which currently is available on the Comprehensive R
Archive Network (CRAN).

There are several R packages on the CRAN and GitHub? repositories dealing
with the Elo rating systems. But none of the available packages is suitable for cal-
culating the WElo rates as the welo package. Moreover, the welo package allows
the user to directly download tennis data using the http://www.tennis-data.co.uk/
site, which is weekly updated. The welo package can also easily plot the WElo
and Elo rates, and it is flexible to include specific and user-based weights to some
match conditions (for instance, if the match is Grand Slam match or it is played
on a given surface). Another feature is the setting of the scale factor (more details
will be provided in the next section), which is used to define how much the rate
changes after the end of the match. Finally, the welo package also calculates the
profits and losses deriving from a set of betting strategies. In what follows, we de-
scribe the main features of existing R packages dealing with the Elo rates. These
information are then synthesized in Table 1.

Package elo (Heinzen, 2022) is on CRAN since 2017. It allows the calcula-
tion of the Elo rates both for team and non-team sports via its function elo.run,
which is very flexible because it only requires the indication of the points of the
two contendents. However, it does not include the possibility of taking into ac-
count the past scoreline to predict future winning probabilities. It neither allows
to weight differently specific matches (for instance, the tennis matches played on
a particular surface).

Package EloRating (Neumann and Kulik, 2020) is devoted to quantify ani-
mal dominance hierarchies. However, the main function providing the Elo rates,
labeled fastelo, could also be used for non-animals data. In particular, it is suf-
ficient to include as inputs in fastelo the names of the winners and losers, match
by match. On the other side, EloRating package can not consider the scoreline
of the last matches or specific match conditions. Moreover, it does not allow for a
dynamic choice for the scale factor.

Package EloOptimized (Feldblum et al., 2021) has the maximum likelihood

2The set of competing models used in Angelini et al. (2022) is: the standard Elo model, the
Bradly-Terry type model (McHale and Morton, 2011), the logit and probit regressions of Klaassen
and Magnus (2003) and Del Corral and Prieto-Rodriguez (2010), respectively.

3GitHub hosts freely R packages, many of which are under development before being published
on the CRAN.

https://cran.r-project.org/web/packages/welo/welo.pdf
http://www.tennis-data.co.uk/
https://cran.r-project.org/web/packages/elo/elo.pdf
https://cran.r-project.org/web/packages/EloRating/EloRating.pdf
https://cran.r-project.org/web/packages/EloOptimized/EloOptimized.pdf

estimation of the scale factor as the main feature. In particular, such a scale fac-
tor is not fixed by the user (even though there is also this possibility), but it is
estimated by maximizing the likelihood of the sigmoid probability function as
defined by Foerster et al. (2016). In addition, following the same maximum like-
lihood procedure, E1oOptimized can also estimate the initial Elo rates.

Package EloChoice (Neumann, 2019) calculates the Elo rates through the
elochoice function. However, the scale factor is fixed and there are no possibil-
ities of setting different weights according to specific match conditions.

Package comperank (Chasnovski, 2020a) offers a variety of ranking and rat-
ing based on competition methods. Among these methods, the user can obtain the
Elo rates via the elo function. One of the advantages of the elo function is the
possibility of having ties. But, on the other side, the comparank package requires
a specific format of the matches’ data, making use of the as_longcr function of
the comperes package (Chasnovski, 2020b). Also for this package, the result-
ing Elo rates consider a fixed scale factor and do not take into account the match
conditions.

There are at least three packages dealing with the Elo rates on GitHub: elomov,
mELO and bwsTools. The package elomov implements the Elo rates with the mar-
gin of victory option, as recently proposed by Kovalchik (2020). At the time of
this writing, the whole installation of the elomov package via GitHub does not
work. However, it is possible to manually install the functions of the package.
The package mELO, using the ELO function, also admits ties, but the resulting Elo
rates are based on a fixed scale factor. Finally, the package bwsTools allows for
the calculation of the Elo rates via elo function. The bwsTools package does not
allow for a time-varying scale factor or for a different rate according to specific
match conditions.

Finally, none of the previously cited packages implements betting functions.

The rest of the paper is as follows. Section 2 illustrates how to compute
the WElo and Elo rates. Section 3 presents the details of the welo package for
computing the WElo and Elo rates. Section 4 is devoted to the betting application
via the welo package. Conclusions follow.

2. Weighted and standard Elo rates

Throughout all the work, we use the same notation of Angelini et al. (2022).
Therefore, i and j will indicate two opponents in a tennis match and E;(¢) and
E;(t) their Elo ratings for the match at time 7. Then, the probability that player i

https://cran.r-project.org/web/packages/EloChoice/EloChoice.pdf
https://cran.r-project.org/web/packages/comperank/comperank.pdf
https://cran.r-project.org/web/packages/comperes/comperes.pdf
https://rdrr.io/github/GIGTennis/elomov/
https://rdrr.io/github/dclaz/mELO/
https://rdrr.io/github/markhwhiteii/bwsTools/

Table 1: R packages

Name Repository | Weighted rates Scale factor
welo CRAN Yes Varying or fixed

elo CRAN No Fixed
EloRating CRAN No Fixed

EloOptimized CRAN No Estimated
EloChoice CRAN No Fixed
comparank CRAN No Fixed
elomov GitHub Yes Fixed
mELO GitHub No Fixed
bwsTools GitHub No Fixed

wins against player j in match ¢ is:

1
iilt) = . 1
p 71() 1 + 10(Ej(l‘)*Ei(l‘))/400 ()

The formula updating the Elo ratings for player i is:
Ei(1+1) = Ei(t) + Ki(r) [Wi(t) — pi; (1)], @)

where W;(¢) represents an indicator function, which is one if player i wins match
t and zero otherwise, and K;(¢), as mentioned above, is a scale factor determining
how much the Elo rate changes after match 7. Such a scale factor is crucial in
making effective the differences between the rates across players. It could be
fixed to a given value (as many existing packages do). It could be estimated (as the
EloOptimized package does). Or, as the welo package does, it could fixed, time-
varying or even time-varying and, jointly, larger for some specific tournaments or
surfaces.

The WElo rates, contrary to what happens for the Elo standard rates, allow for
the consideration of the scoreline of the matches in the updating formula. More in
detail, Eq. (2) incorporates an additional function f(-), depending on the number
of games G; () or number of sets S;;(#) won by players i and j during match ¢.
When the WElo rates depend on the number of games G; j(t), the rates (for player
i) are defined as:

Ef(t+1) = Ef (1) + Ki(t) [Wi(r) — p; ;(1)] £(Gi (1)), 3)

4

https://cran.r-project.org/web/packages/welo/welo.pdf
https://cran.r-project.org/web/packages/elo/elo.pdf
https://cran.r-project.org/web/packages/EloRating/EloRating.pdf
https://cran.r-project.org/web/packages/EloOptimized/EloOptimized.pdf
https://cran.r-project.org/web/packages/EloChoice/EloChoice.pdf
https://cran.r-project.org/web/packages/comparank/comparank.pdf
https://rdrr.io/github/GIGTennis/elomov/
https://rdrr.io/github/dclaz/mELO/
https://rdrr.io/github/markhwhiteii/bwsTools/

where p; ;(t) is estimated using Eq. (1) but with E;() and E;(t) replaced by the
corresponding WElIo rates, labeled as E; () and E(¢), respectively. In Eq. (3),
f(Gi j(1)) is a function whose values depend on the games played in the previous
match. In particular, f(G; ;(¢)) is defined as:

£(Gii(r) = NG:()+NG; (1) if player i has won match ¢; @
! #’5&;](,) if player i has lost match ¢,

where NG;(t) and NG(t) represent the number of games won by player i and
player j in match ¢, respectively.
When the WElIo rates depend on the number of sets, f (S;,(¢)) is obtained as:

NS,‘(t) . . .
F(5:4(0)) = NSNS @) if player i has won match ¢; 5
J %’%m if player i has lost match ¢,

where NS;(¢) and NS(t) represent this time the sets won by player i and player j
in match 7, respectively. Then, f (S;,(t)) replaces f(G; ;(t)) in Eq. (3).

3. WElo and Elo rates through the welo package

For ease of replicability, the interested user can reproduce all the following codes,
once that the welo package has been installed from CRAN and loaded, that is:

R> install.packages("welo") # only the first time
R> library (welo)

The first step for using the welo package is the collection of tennis matches.
By means of the tennis_data function, this step is immediately achieved:

R> db<—tennis_data("2021","ATP")

By the previous code, the db object includes all the matches played in 2021 for the
Association of Tennis Professionals (ATP). If we are interested in female matches,
then we can replace “ATP” by “WTA”, where WTA stands for Women Tennis As-
sociation.

The second step for obtaining the WEIlo and Elo rates is cleaning the data.
This operation is extremely delicate and is performed accurately through the clean
function:

R> db_cleaned<—-clean (db)
Number of matches (before cleaning) 2489

Number of matches (after cleaning) 1771
Number of players (before cleaning) 307
Number of players (after cleaning) 121

After running the clean function, some information automatically appear:
the number of matches and players before and after the cleaning. More in detail,
the clean function executes the following steps:

1. Remove all the uncompleted matches;

2. Remove all the NAs from B365 odds;

3. Remove all the NAs from the variable “ranking”, if any;
4. Remove all the NAs from the variable “games”, if any;
5. Remove all the NAs from the variable “sets”, if any;

6. Remove all the matches where the odds provided by the professional book-
maker Bet365 are equal, if any;

7. Define players i and j and their outcomes (¥; and Y);

8. Remove all the matches of players who played less than the parameter of
the clean function defined as MNM. By default, MNM = 10, which means that
all the players playing less than 10 matches in db are excluded;

9. Remove all the matches of players with rank greater than the MRANK param-
eter. By default, MRANK = 500, which means that all the matches involving
players rank above position 500 are excluded;

10. Sort the matches by date.

Changing the optional parameters of the clean function will return different
cleaned datasets. For instance, if the interest is in the top-100 players playing at
least one match, then the code will be:

R> db_cleaned_top_100<—clean (db, M\M=1, MRANK=100)
Number of matches (before cleaning) 2489

Number of matches (after cleaning) 1386

Number of players (before cleaning) 307

Number of players (after cleaning) 116

Finally, the clean function configures the dataset to be ready for the core
function of the welo package, that is welofit. This is done by adding the
columns of NG;, NGj, NS;, NS;, f(G; ;(t)) and f(S; ;(¢)) to the cleaned db.

As mentioned above, the most important function of the welo package is the
welofit function, which is very flexible and has several options. By default, it
calculates the WElo and Elo rates with the following code:

R> res<—welofit(db_clean)
Brier Log—Loss

WElo 0.2274 0.6451

Elo 0.2325 0.6581

As for the clean function, also the welofit function automatically synthesizes
some information in the console after the execution. In this case, the user can
quickly verify if the WEIlo performs better or worse than the standard Elo rates, ac-
cording to the Brier (Brier, 1950) and Log-Loss (used by Kovalchik, 2016, among
others) loss functions. These two loss functions map the distance between the pre-
dicted probability and the actual outcome of all the matches. The smaller the loss
function is, the better that model is. By default, the WElo and Elo rates are calcu-
lated using the time-varying scale factor reported in Kovalchik (2016), that is:
250

KO = o +57 ©

where N;(t) represents the number of matches of player 7 at time ¢. This config-
uration increases the variation of the Elo and WElo ratings if player i has played
few matches and vice versa.

Finally, the default setting of the welo function considers the scores of the
games (see Eq. (4)) for the WElo rates, the starting points fixed to 1500, while the
standard errors are not estimated.

Let us now focus on the resulting object of the welo function, which, in this
case, has been called res. This object is a ‘welo’ object, which is a list containing
the following components:

R> class(res)

[1] "welo"
R> names(res)
[1] "results" "matches" "period" "loss" "highest_welo"

[6] "highest_elo" "dataset"

The previous components are:

. results: The data.frame including a variety of variables, among which there
are the estimated WEIlo and Elo rates, before and after the match ¢, for
players i and j, the probability of winning the match for player i (labeled
as WElo_pi_hat and Elo_pi_hat, for the probabilities obtained from the
WEIlo and Elo models, respectively).

. matches: The number of matches analyzed.

. period: The sample period considered.

. loss: The Brier score and log-loss averages.

. highest_welo: The player with the highest WElo rate and the correspondent
date.

. highest_elo: The player with the highest Elo rate and the correspondent
date.

. dataset: The dataset used for the estimation of the WElo and Elo rates.

The welo function allows for a variety of options. Firstly, the WELo rates can
be calculated using the sets instead of the games. This is can be easily achieved
through:

R> res_s<—welofit(db_clean ,W="SETS")

Brier Log—Loss

WElo 0.2301 0.6521

0.2325 0.6581

Unsurprisingly, the (smaller) information content included in the sets, with respect
to the games, worsens the WElo performance.

Moreover, the user can change the starting values of the WEIlo and Elo rates

setting the parameter SP to another option. For instance, if the user wants the
starting values equal to 1000 (instead of 1500, which is the default value), it is
sufficient to run the following code:

R> res_1000<—welofit (db_clean ,SP=1000)

Brier Log—Loss

WElo 0.2274 0.6451

0.2325 0.6581

Unexpectedly, it can be noted that the performances of the WElo and Elo models,
when the starting values are set to 1000, are the same as the case with the starting
points equal to 1500.

Another interesting feature of the welo function is flexibility of the scale
factor K;(¢) (and K;(z)). By default, the scale factor is time-varying, according
to Eq. (6). But such a parameter could be easily changed to be constant. For
instance, if the user wants a constant scale factor of 100, the code will be:

R> res_K 100<—welofit (db_clean ,K=100)
Brier Log—Loss

WElo 0.2274 0.6450

Elo 0.2340 0.6619

In this case, the better performance of the WEIo model appears even more evident.
Another possibility is to set K such that more weight is given to specific tourna-
ments or match surfaces. Currently, four options are available: “Grand_Slam”,
“Surface_Hard”, “Surface_Clay” and “Surface_Grass”. Each of the previous op-
tions increases the time-varying scale factor in (6) by 1.1 if the match is a Grand
Slam match, is played on hard, clay, or grass, respectively. For instance, if the
user wants to calculate the WElo and Elo rates giving more emphasis on the Grand
Slam matches, then the code will be:

R> res_gs<—welofit(db_clean ,K="Grand_Slam")
Brier Log—Loss

WElo 0.2272 0.6447

Elo 0.2325 0.6584

Another peculiar feature of the welofit function is the calculation of the stan-
dard errors for the WElo and Elo rates, according to the procedure suggested by
Angelini et al. (2022). The code will be:

R> res_ci<—welofit (db_clean , CI=TRUE)
Brier Log—Loss

WElo 0.2274 0.6451

Elo 0.2325 0.6581

The resulting Brier and Log-Loss averages are exactly the same of res. This is
because the setting parameters are unchanged. But, this time, the “results” com-
ponent of res_ci includes also the lower (labeled with the suffix “_Ib”) and upper
(labeled with the suffix “_ub”) bootstrap confidence intervals. The confidence in-
tervals are obtained according to the procedure illustrated in Angelini et al. 2022
(see their Section 2.1). By default, the bootstrap confidence intervals are obtained

Table 2: Grand Slam 2021 finals, WElo rates and standard errors

Grand Slam | Players WElo | p; ;(t) LB UB
Australian | i) Djokovic N. | 1704.187 | 0.512 | 1655.157 | 1750.961
Open j) Medvedev D. | 1696.004 1649.230 | 1745.034
Roland i) Djokovic N. | 1847.900 | 0.487 | 1816.258 | 1881.268
Garros j) Tsitsipas S. 1857.125 1829.618 | 1883.210
Wimbledon | i) Djokovic N. | 1894.685 | 0.632 | 1856.548 | 1916.848
j) Berrettini M. | 1800.394 1778.231 | 1838.531
US Open | i) Djokovic N. | 1943.422 | 0.649 | 1906.715 | 1963.316
J) Medvedev D. | 1837.013 1818.781 | 1870.651

Note: Winning player is in Bold.

using a significance level alpha = 0.05 and a number of bootstrap replicates B
= 1000. The WElo rates calculated before each Grand Slam 2021 final, together
with the bootstrap standard errors and the probability that player i wins over player
J (that is, p; ;(¢)) are reported in Table 2.

One of the most interesting features of the welo package is the possibility
of plotting the WElo and Elo rates in nice graphs. The plot can be obtained by
the welo_plot function, whose only input required is the (character) vector of
players. Being in a ggplot2 environment, the user can complete the plot by adding
font size details via the ggplot2: : theme () option. Suppose that the user wants
the plot of the WELo rates for the following players: Nadal, Djokovic, Berrettini,
and Sinner. Moreover, suppose that the user considers the rates from the res
object previously obtained. Then, the code will be:

R> require (ggplot2)

R> players<—-c("Nadal R.","Djokovic N.",
"Berrettini M.","Sinner J.")

R> welo_plot(res , players)+

ggplot2 ::theme(text = element_text(size = 20))

The output of the previous lines is in Figure 1(a). Figure 1(a) has some in-
teresting peculiarities. First, at the end of 2021, Djokovic was largely the player
with the highest WEIlo rate. Second, there is evidence of periods where some
players did not play. These periods are highlighted in the plot with a horizon-
tal line. For instance, during the second half of the 2021 season, Nadal played

10

only two matches (in August, at the Washington Citi Open) after the defeat at the
Roland Garros in June. This is the reason why Nadal’s orange line is horizontal
from mid-June to the end of 2021. By default, the WElo rates are considered.
Changing the optional parameter rates of welo_plot from “WElo” to “Elo”,
the standard Elo rates depicted in Figure 1(b) are obtained. It is worth noting that
the patterns of the WEIlo and Elo rates are very similar, even though the former
are always smaller than the latter.

R> welo_plot(res, players ,rates="Elo")+
ggplot2 :: theme(text = element_text(size = 20))

The welo package also provides a function to plot players’ official (ATP or WTA)
rank. The following code will plot (in Figure 1(c)) the official ranks of the four
players already used in Figures 1(a) and 1(b):

R> rank_plot(res,players)+ ggplot2::theme(text =
element_text(size = 20))

Some considerations arise looking at Figure 1. First, a necessary burn-in
period is required to make the WElo and Elo rates reliable. This problem could
be easily solved by enlarging the sample period. Second, even though at the end
of sample, the WEIlo and Elo rates have the same order of the official ATP rank,
the best player during Spring 2021 is Rafael Nadal for the WEIlo and Elo rates (in
place of the official number one of the ATP rank, Novak Djokovic). Third, at the
end of the 2021 season, mainly for the WElo rates, the young Italian player Jannik
Sinner is pretty close to the other Italian tennis top player, Matteo Berrettini. This
closeness between the two Italian players is not overall captured by the official
ATP rank.

4. Betting with the welo package

In the sports literature, one of the main aims of a forecasting model is to verify its
performance from an economic point of view. This can be easily achieved through
the welo package, thanks to the betting function. Such a function represents a
novelty in the context of R packages dealing with Elo rates because none of the
existing packages has similar functions at the time of this writing. The betting
function requires four inputs to work: x, r, q and model. The first input x is a
‘welo’ object from the welofit function. The second and third inputs r and q are
two thresholds that identify the matches on which place an amount of $1. More in
detail, as suggested by Angelini et al. (2022), the bets are placed on the matches

11

WEIo rates

1900-
1800~
Players
— NadalR.
Djokovic N.
1700~ Berrettini M.
Sinner J.
1600-
1500-

01/2021 0412021 07/2021 102021
Time

(a) WElIo rates

2000-
Players
1800 — NadalR.
— Djokovic N.
— Berrettini M.
~ Sinner J.
1600-

01/2021 0412021 07/2021 102021
Time

Elo rates

(b) Elo rates

I—’—I—

- Players
€ 1g — NadalR.
1o — Djokovic N.
- — Berrettini M.
- ~ SinnerJ.
-
5-
5-
01/2021 042021 0712021 103021
Time

(c) ATP Rank

Figure 1: Plots of the welo package
12

satisfying the following conditions:

P()
qi,j(t)

>r and g;j(t) >q, @)

where 13, j(t) are the two probabilities as resulting from the Elo and WElo models
for the match between i and j at time ¢, that is, P, (1) = {ﬁhj(t),ﬁzj(t)}, and
qij(t) is the inverse of the published odds for the same match, also named im-
plied probability. For coverage reasons, the welo package considers the implied
probabilities ¢; ;(¢) offered by the professional bookmaker Bet365. The user can
decide the model (WElo or Elo) originating the probabilities of winning via the
fourth input of the betting function, that is setting model = “WELO” or model
= “ELO”.

In line with McHale and Morton (2011) and Dixon and Coles (1997), the
threshold r is used to discriminate among matches on which place a bets or not.
For instance, if r = 1, only matches whose predicted probabilities are greater than
the implied probabilities are worthy of a bet. When r increases, fewer matches
will be selected. The betting function allows also for the inclusion of a set of
values for r. As concerns the threshold q, such a value is needed to exclude heavy
underdogs. For instance, when q = 0.30, then all the matches whose Bet365
implied probabilities are smaller than 0.30 will be excluded. Bearing this in mind,
a general configuration of the betting function could be:

R> res_bet_welo<-betting (res ,r=seq(1,1.3,0.05),
q=0.3, model="WELO")

r # Bets ROI(%) LCI UCI
[1,] 1.00 1002 10.045908 3.4753003 16.22180
[2,] 1.05 823 8.883354 1.4252170 16.11634
[3,] 1.10 655 10.175573 1.8184030 18.80244
[4,] 1.15 533 10.553471 1.4241092 20.09728
[5,] 1.20 438 11.808219 1.1060541 22.28150
[6,] 1.25 338 13.239645 0.6448331 25.11509
[7,] 1.30 265 16.584906 1.6015294 31.78393

The predicted probabilities included in the ‘welo’ object labeled res are consid-
ered in the previous command. The resulting output of the betting function is
a matrix that includes five columns. The first column reports the values of the
threshold r. Hence, among the 1771 matches of the full dataset, the betting rule
suggests of betting on 1002 matches, when r = 1 and g = 0.3. The second column

13

includes the number of bets (for each correspondent threshold r). As mentioned
above, the higher the threshold is, the smaller the number of matches to bet on
is. The third column reports the Returns-on-Investment (ROI), in percentage. The
last two columns show the lower (LCI) and upper (UCI) bootstrap confidence in-
tervals, computed using the default number of bootstrap replicates (R = 2000) and
the default significance level (alpha = 0.1). The user can easily change those two
settings. In what follows, there is the code and the output for the Elo probabilities:

R> res_bet_elo<-betting (res ,r=seq(1,1.3,0.05),
qg=0.3 ,model="ELO")

r # Bets ROI(%) LCI UCI
[1,] 1.00 1096 6.914234 1.4332144 12.67208
[2,] 1.05 893 7.767077 1.0466995 14.56551
[3,] 1.10 713 8.830295 1.2234941 16.32349
[4,] 1.15 607 9.059308 0.2738958 17.10543
[5.,] 1.20 506 11.373518 2.0207622 21.47579
[6,] 1.25 409 9.312958 -1.1881413 20.27323
[7,] 1.30 329 11.556231 -0.7741607 23.21550

Interestingly, it can be noted that the ROI(%) of the WEIlo probabilities are higher
than the corresponding Elo probabilities, independently of the threshold r adopted.
Moreover, all the ROI(%) of the WElo model are statistically significant, while the
same does not happen for the ROI(%) of the Elo model.

Finally, the betting function has some optional parameters which could be
set: bets, R, alpha, start_oos, and end_oos. The parameter bets identifies
the type of bet used. By default, it is “Best_odds”, which means that the bets
are placed using the best odds available among all the bookmakers. Alternative
choices for bets are: “Avg_odds” and “B365_odds”. “Avg_odds” are the average
odds among all the odds published by the professional bookmakers for the match
under consideration and “B365_odds” are the Bet365 odds. The parameter R rep-
resents the number of bootstrap replicates to calculate the confidence intervals of
the ROI(%). Its default value is 2000. The parameter alpha is the significance
level for the boostrap confidence intervals. By default, alpha = 0.1. Eventu-
ally, the user could also bet on a specific time period. This is can be easily done
setting the parameters start_oos and end_oos, which have to be formatted as
“YYYY”. For instance, if the user is interested in the time interval from 2021 to
2022, then he/she has to format start_oos = “2021” and end_oos = “2022” 4

“4The time interval from 2021 to 2022 would require a larger dataset including also data for 2022.

14

For comparison purposes, the welo package includes also another betting
function, labeled random_betting. Such a function is useful when the user
wants to evaluate if randomly betting on players i and j is a winning strategy
with respect to the decision on the basis of the WEIlo and Elo probabilities. To
make a fair comparison, random_betting shares almost all the inputs with the
function betting: this means that the user can set the two functions similarly
to select the same matches. As said before, in the case of random_betting, the
players i and j are randomly selected. To reduce the impact of this randomness,
the random_betting function repeats the random selection B times, which is the
only (optional) parameter of the random_betting function not included in the
betting function. By default, B = 10000. The resulting matrix reports the over-
all mean of the ROI (in percentage) across the B values for every threshold r used.
The code will be:

R> res_rand_bet<-random_betting (res ,r=seq(1,1.3,0.05),
q=0.3 ,model="WELO")
r # Bets ROI(%)
.00 1002 2.589963
.05 823 2.907354
.10 655 3.340112
.15 533 2.776383
.20 438 3.015227
[6,] 1.25 338 3.906786
[7,] 1.30 265 4.292838
R> res_rand_bet<—random_betting (res ,r=seq(1,1.3,0.05),
q=0.3,model="ELO")
r # Bets ROI(%)

[1.]
[2,
[3.]
[4,
[5.]

— = e e e e

[1,] 1.00 1096 2.328365
[2,] 1.05 893 2.419626
[3.] 1.10 713 2.052510
[4,] 1.15 607 2.458521
[5.] 1.20 506 3.137259
[6,] 1.25 409 2.724166
[7.,] 1.30 329 3.513878

From the last two R outputs, it can be noted that the random selection of players
on which place a bet, even if repeated B times, does not yield larger ROI(%) with
respect to the previous two ROI(%) obtained from the WElo and Elo rates.

15

5. Conclusions

The present contribution aimed at explaining the details of the welo package,
an R package for the calculation of the standard (that is, unweighted) and weighted
Elo (WElo) rates for tennis. The welo package has some interesting features: (i)
the direct download of data for male and female professional tennis matches (via
the tennis_data function); (ii) the cleaning of the tennis data (through the clean
function); (iii) the calculation of standard and WElIo rates by the core function of
the package labeled welofit, with the possibility of weighting differently some
tournaments and surfaces and having constant or time-varying scale factor; (iv)
the plot of the resulting Elo and WElo rates with the welo_plot function; (v)
the economic evaluation of the Returns-on-Investment (ROI) obtained from the
predicted probabilities of the Elo and WElo rates, according to the betting rule of
Angelini et al. (2022) and references therein; (vi) the comparison of the previous
ROI with the ROI obtained from the random betting strategy.

The current paper can serve as a guide for practitioners and R users for the
first time dealing with the calculation of the Elo and WElo rates. Further ex-
tensions of the welo package could enlarge the sports under consideration, like
basket, volley and so forth.

References

Angelini, G., Candila, V., and De Angelis, L. (2022). Weighted Elo rating for ten-
nis match predictions. In European Journal of Operational Research, 297 (1):
120-132.

Angelini, G. and De Angelis, L. (2017). PARX model for football match predic-
tions. In Journal of Forecasting, 36 (7): 795-807.

Arcagni, A., Candila, V., and Grassi, R. (2022). A new model for predicting the
winner in tennis based on the eigenvector centrality. In Annals of Operations
Research, 1-18.

Brier, G.W. (1950). Verification of forecasts expressed in terms of probability. In
Monthly weather review, 78 (1): 1-3.

Carbone, J., Corke, T., and Moisiadis, F. (2016). The rugby league prediction
model: Using an Elo-based approach to predict the outcome of National Rugby
League (NRL) matches. In International Educational Scientific Research Jour-
nal, 2 (5): 26-30.

16

Chasnovski, E. (2020a). comperank: Ranking Methods for Competition Re-
sults. URL https://CRAN.R-project.org/package=comperank. R pack-
age version 0.1.1.

Chasnovski, E. (2020b). comperes: Manage Competition Results. URL https:
//CRAN.R-project.org/package=comperes. R package version 0.2.5.

Del Corral, J. and Prieto-Rodriguez, J. (2010). Are differences in ranks good
predictors for Grand Slam tennis matches? In International Journal of Fore-
casting, 26 (3): 551-563.

Dixon, M.J. and Coles, S.G. (1997). Modelling association football scores and
inefficiencies in the football betting market. In Journal of the Royal Statistical
Society: Series C (Applied Statistics), 46 (2): 265-280.

Elo, A.E. (1978). The rating of chessplayers, past and present. Arco Pub.

Feldblum, J., Foerster, S., and Franz, M. (2021). EloOptimized: Optimized Elo
Rating Method for Obtaining Dominance Ranks. URL https://CRAN.R-
project.org/package=EloOptimized. R package version 0.3.1.

Foerster, S., Franz, M., Murray, C.M., Gilby, I.C., Feldblum, J.T., Walker, K.K.,
and Pusey, A.E. (2016). Chimpanzee females queue but males compete for
social status. In Scientific reports, 6 (1): 1-11.

Heinzen, E. (2022). elo: Ranking Teams by Elo Rating and Comparable Meth-
ods. URL https://CRAN.R-project.org/package=elo. R package ver-
sion 3.0.1.

Hvattum, L.M. and Arntzen, H. (2010). Using ELO ratings for match result pre-
diction in association football. In International Journal of Forecasting, 26 (3):
460-470.

Klaassen, F.J. and Magnus, J.R. (2003). Forecasting the winner of a tennis match.
In European Journal of Operational Research, 148 (2): 257-267.

Koopman, S.J. and Lit, R. (2015). A dynamic bivariate poisson model for
analysing and forecasting match results in the English Premier League. In
Journal of the Royal Statistical Society: Series A (Statistics in Society), 178 (1):
167-186.

17

https://CRAN.R-project.org/package=comperank
https://CRAN.R-project.org/package=comperes
https://CRAN.R-project.org/package=comperes
https://CRAN.R-project.org/package=EloOptimized
https://CRAN.R-project.org/package=EloOptimized
https://CRAN.R-project.org/package=elo

Kovalchik, S.A. (2016). Searching for the GOAT of tennis win prediction. In
Journal of Quantitative Analysis in Sports, 12 (3): 127-138.

Kovalchik, S. (2020). Extension of the Elo rating system to margin of victory. In
International Journal of Forecasting, 36: 1329—-1341.

Kovalchik, S. and Reid, M. (2019). A calibration method with dynamic updates
for within-match forecasting of wins in tennis. In International Journal of
Forecasting, 35 (2): 756-766.

Leitner, C., Zeileis, A., and Hornik, K. (2010). Forecasting sports tournaments by
ratings of (prob) abilities: A comparison for the EURO 2008. In International
Journal of Forecasting, 26 (3): 471-481.

Lisi, F. and Zanella, G. (2017). Tennis betting: can statistics beat bookmakers?
In Electronic Journal of Applied Statistical Analysis, 10 (3): 790-808.

Mattera, R. (2021). Forecasting binary outcomes in soccer. In Annals of Opera-
tions Research, 1-20.

McHale, I. and Morton, A. (2011). A Bradley-Terry type model for forecasting
tennis match results. In International Journal of Forecasting, 27 (2): 619-630.

Neumann, C. (2019). EloChoice: Preference Rating for Visual Stimuli Based on
Elo Ratings. URL https://CRAN.R-project.org/package=EloChoice.
R package version 0.29.4.

Neumann, C. and Kulik, L. (2020). EloRating: Animal Dominance Hierarchies by
Elo Rating. URL https://CRAN.R-project.org/package=EloRating. R
package version 0.46.11.

Ryall, R. and Bedford, A. (2010). An optimized ratings-based model for forecast-
ing Australian Rules football. In International Journal of Forecasting, 26 (3):
511-517.

18

https://CRAN.R-project.org/package=EloChoice
https://CRAN.R-project.org/package=EloRating

	Introduction
	Weighted and standard Elo rates
	WElo and Elo rates through the welo package
	Betting with the welo package
	Conclusions
	References

