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Abstract Women’s beach volleyball became an official Olympic sport in 1996 and
continues to attract the participation of amateur and professional female athletes. The most
well-known ranking system for women’s beach volleyball is a non-probabilistic method
used by the Fédération Internationale de Volleyball (FIVB) in which points are accumulated
based on results in designated competitions. This system produces rankings which, in part,
determine qualification to elite events including the Olympics. We investigated the
application of several alternative probabilistic rating systems for head-to-head games as an
approach to ranking women’s beach volleyball teams. These include the Elo (1978) system, the
Glicko (Glickman, 1999) and Glicko-2 (Glickman, 2001) systems, and the Stephenson
(Stephenson and Sonas, 2016) system, all of which have close connections to the Bradley-
Terry (Bradley and Terry, 1952) model for paired comparisons. Based on the full set of
FIVB volleyball competition results over the years 2007-2014, we optimized the parameters
for these rating systems based on a predictive validation approach. The probabilistic rating
systems produce 2014 end-of-year rankings that lack consistency with the FIVB 2014
rankings. Based on the 2014 rankings for both probabilistic and FIVB systems, we found
that match results in 2015 were less predictable using the FIVB system compared to any of
the probabilistic systems. These results suggest that the use of probabilistic rating systems
may provide greater assurance of generating rankings with better validity.
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1. INTRODUCTION

Beach volleyball, a sport that originated in the early 1900s, has been played by
athletes on a professional basis for over 50 years. The rules of competitive beach
volleyball are largely the same as indoor volleyball with several notable differences.
Beach volleyball is played on a sand court with teams consisting of two players as

1 Corresponding author: Mark E. Glickman, email: glickman@fas.harvard.edu
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opposed to six in indoor volleyball. Matches are played as a best of 3 sets, in which
each of the first two sets is played to 21 points, and the deciding set (if the first two
sets split) is played to 15 points. The popularity of beach volleyball has led to regular
organized international competition, with the sport making first appearance in the
Olympic games in 1996.

The main international organization governing volleyball competition is the
Fédération Internationale de Volleyball (FIVB). The FIVB originated in the 1940s,
and is involved in planning elite international volleyball tournaments including the
Olympic Games, the Men’s and Women’s World Championships, the World Tour,
various elite youth events. In addition to being the main organizers of many
professional beach volleyball tournaments organized worldwide, the FIVB
coordinates events with national volleyball organizations and with other international
athletic organizations such as the International Olympic Committee. The FIVB is also
responsible for the standardization of the rules of volleyball for international competition.

One of the most important functions of the FIVB is the determination of how
teams qualify for international events, which is largely based on the FIVB’s ranking
system. FIVB rankings determine how teams are seeded on the World Tour, thereby
affecting their performance and tournament earnings, as well as determining which
teams compete in the Olympic Games. Currently, the FIVB relies on an accumulation
point system to rank its players. The system awards points based on teams’ finishing
place at FIVB tournaments, with the most points being awarded to the highest-
placing teams. Furthermore, greater point totals are at stake at larger tournaments,
such as World Championships or Grand Slam tournaments.

The current FIVB ranking system has several desirable qualities, including its
simplicity and ease-of-implementation. Because the ranking system involves fairly
basic computation, the system is transparent. The system also behaves predictably,
so that teams with better finishes in tournaments typically move up in the FIVB
rankings. The convenience of ranking teams according to such a system, however,
is not without its shortcomings. For example, because the FIVB system awards
points based solely on the final standings in a tournament, information from earlier
match results in a tournament does not play a role in computing rankings. Many
tournaments include only four to five rounds of bracket play, with most teams only
making it through one or two matches in this stage.  Only the teams who advance
further receive FIVB points. Pool play, meanwhile, often represents the majority of
the matches played by a team in a tournament, even for those who make it into the
championship bracket (many teams play only 1-2 bracket matches after 4-5 pool
play matches). The results of matches in pool play are not evaluated as part of the
FIVB ranking calculation. Thus the FIVB system misses out on key information
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available in individual match data from the entire tournament.
In contrast to the FIVB ranking system, rating systems have been developed

to measure the probability of one team defeating another with the goal of accurately
predicting future match outcomes. Many of these approaches have arisen from
applications to games like chess, whose Elo system (Elo, 1978) and variants thereof
have been used in leagues for other games and sports such as Go, Scrabble, and table
tennis. The main difference between such probabilistic systems and the point
accumulation system of the FIVB is that all match results are incorporated in
producing team ratings, with each head-to-head match result factoring into the
computation. Furthermore, the probabilistic systems smoothly downweight the
impact of less recent competition results relative to more current ones. In the FIVB
system, tournaments older than one year do not play a role in the current rankings,
whereas in most probabilistic systems older match results are part of the computation
though they receive small weight. Reviews of different sports rating systems, both
of point accumulation systems and probabilistic ones, can be found in Stefani
(1997) and Stefani (2011).

In this paper, we compare the FIVB system to four probabilistic systems that
have been in use in other sports/games contexts. We examine the comparison of
these different rating systems applied to match data collected on women’s beach
volleyball. We describe in detail in Section 2 the FIVB system along with the four
probabilistic rating systems. This is followed in Section 3 by a description of the
women’s beach volleyball data and the implementation of the probabilistic rating
systems. In Section 4 we describe the results of our analyses. The paper concludes
in Section 5 with a discussion about the results, and the appropriateness of using a
probabilistic rating system for FIVB competition.

2. RATING VOLLEYBALL TEAMS

We describe in this section the point system used by the FIVB to rank players, and
then review the four probabilistic rating systems considered in this paper.

2.1 FIVB TOURNAMENTS

Typical FIVB events are organized as a combination of a phase of Round Robin
competition (pool play) followed by single elimination. For example, the Main
Draw Tournament (separately by gender) for FIVB Beach Volleyball World Tour
Grand Slam & Open is organized as 32 teams divided into eight pools of four teams.
The four teams within each pool compete in a Round Robin, and the top 3 within
each pool advance to a single elimination knockout phase, with the top eight seeded
teams automatically advancing to a second round awaiting the winners of the 16-



236 Glickman, M.E., Hennessy, J., Bent, A.

team first round. The losers of the semi-finals compete to determine third and fourth
place in the event.

The seeding of teams within events is computed based on information from
FIVB points earned at recent events. In particular, a team’s seeding is based on
Athlete Entry Points, which are the sum of the FIVB points for the teammates
earned from the best six of the last eight FIVB events within the year prior to 14 days
before the tournament. In the case of ties, the ranking of teams based on the sum of
FIVB points over the entire year (called the Technical Ranking) is used. Given that
the top eight seedings among teams who qualify for the elimination phase of a
tournament have a distinct advantage by not having to compete in a first round, the
ranking computation is an important component of competition administration.

2.2 FIVB POINT SYSTEM

Beach volleyball players competing in FIVB-governed events earn FIVB ranking
points based on their performance in an event and on the category of the event. The
more prestigious the event, the greater the number of ranking points potentially
awarded. Table 1 displays the ranking points awarded per player on a team based
on their result in the event, and based on the event type.

Table 1 indicates that teammates who place first in the World Championships
will each earn 500 points, whereas finishing in first place at a Continental Cup will
earn only 80 points. Teams who finish tied in fifth through eighth place (losing in
the quarter-final round) all receive the same ranking points as indicated by the 5th
place row in the table. Because points earned in an event are based exclusively on
the final place in the tournament, and do not account for the specific opponents
during the event, FIVB points can be understood as measures of tournament
achievement, and not as compellingly as measures of ability. Additionally, rankings,
seeding and eligibility are computed based on the accumulation of points based on
a hard threshold (e.g., only points accumulated in the last year) as opposed to a time-
weighted accumulation of points. Thus, a team whose players had an outstanding
tournament achievement exactly 365 days prior to an event would be high-ranked,
but on the next day would lose the impact of the tournament from a year ago.

The event-based FIVB points are used for a variety of purposes. In addition
to seeding teams, they are used for eligibility for international events. For example,
one qualification of teams to participate in the 2016 Olympics in Rio de Janeiro
involved determining an Olympic Ranking, which was the sum of teams’ FIVB
points over the 12 best performances from January 2015 through June 12, 2016.
Other factors were involved with the selection process, but the use of FIVB points
was an essential element.
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Tab. 1: Point scores by event type and place achievement in FIVB competition.

Open/Cont. Cont. Tour Cont. Tour Cont. Age

Tournament Senior Grand Tour Master/ Zonal/FIVB Cont. Group Homolgated

Rank World Ch Slam Final Challenger  Age World Ch Cup  Champs  Nat’l Tour

1st 50 400 250 160 140 80 40 8

2nd 450 360 225 144 126 72 36 6

3rd 400 320 200 128 112 64 32 4

4th 350 280 175 112 98 56 28 2

5th-8th 300 240 150 96 84 48 24 1

9th-16th 250 180 120 80 70 40 20 0

17th-24th 200 120 90 64 56 32 16 0

25th-32nd - 80 60 48 42 24 12 0

33rd-36th 150 40 30 0 0 0 0 0

37th-40th 100 0 0 0 0 0 0 0

41st- - 20 15 0 0 0 0 0

2.3. PROBABILISTIC APPROACH TO RANKING

A major alternative to point accumulation systems is rating systems based on

probabilistic foundations. The most common foundation for probabilistic rating

systems is the class of linear paired comparison models (David, 1988). Suppose

team i and j are about to compete, and let yi j = 1 if team i wins and yi j = 0 if team

j wins. If we assume parameters θi and θ j indicating the strengths of each team,

then a linear paired comparison model assumes that

Pr(yi j = 1|θi,θ j) = F(θi −θ j) (1)

where F is a continuous cumulative distribution function (cdf) with a domain over

R. Choices of F typically used in practice are a logistic cdf or a standard normal

cdf. In the case of a logistic cdf, the model can be written as

logitPr(yi j = 1) = θi −θ j (2)

which is known as the Bradley-Terry model (Bradley and Terry, 1952). The model

was first proposed in a paper on tournament ranking by Zermelo (1929), and was

developed independently around the same time as Bradley and Terry by Good

(1955). The alternative when a standard normal distribution is assumed for F can

be expressed as

Φ−1(Pr(yi j = 1)) = θi −θ j (3)

which is known as the Thurstone-Mosteller model (Mosteller, 1951; Thurstone,

1927). Two general references for likelihood-based inference for the strength pa-
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by Glickman (1993). Other approaches to team strength evolution can be devel-

oped on the θit following a flexible function, such as a non-parametric smoother.

Baker and McHale (2015) used barycentric rational interpolation as an approach

to model the evolution of team strength.

One difficulty with likelihood-based inference (including Bayesian inference)

for time-varying linear paired comparison models is evident when the number of

teams, n, involved in the analysis is large. In such instances, the number of model

parameters can be unwieldy, and the computational requirements for model fitting

are likely to be challenging. Instead, a class of approximating algorithms for time-

varying paired comparisons have relied on filtering algorithms that update strength

parameter estimates based on current match results. These algorithms typically

do not make use of the full information contained in the likelihood, so inference

from these approaches is only approximate. However, the computational ease

is the major benefit for using these approaches, which have become popular in

settings for league competition that involve hundreds or thousands of competitors.

Below we present several rating algorithms that are in current use for estimating

competitor ability.

rameters for these models are David (1988) and Critchlow and Fligner (1991). In

linear paired comparison models such as Bradley-Terry and Thurstone-Mosteller,

a linear constraint is usually assumed on the strength parameters to ensure identi-

fiability such as that the sum of the strength parameters is 0.

Linear paired comparison models can be extended to acknowledge that teams

may change in strength over time. Glickman (1993) and Fahrmeir and Tutz (1994)

present state-space models for the dynamic evolution of team strength. The state-

space model framework assumes a linear probability model for the strength pa-

rameters at time t, but that the parameters follow a stochastic process that governs

the evolution to time t + 1. For example, an auto-regressive paired comparison

model may be implemented in the following manner. If θit is the strength of team

i at time t, then the outcome of a match between teams j and k at time t is given

by

Pr(y jk = 1|θ jt ,θkt) = F(θ jt −θkt) (4)

and that for all i = 1, . . . ,n (for n teams),

θi,t+1 = ρθit + εit (5)

where εit ∼ N(0,σ 2) and |ρ| < 1. Bayesian inference via Markov chain Monte

Carlo simulation from the posterior distribution may be implemented as described
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2.4. ELO RATING SYSTEM

In the late 1950s, Arpad Elo (1903-1992), a professor of physics at Marquette

University, developed a rating system for tournament chess players. His system

was intended as an improvement over the rating system in use by the United States

Chess Federation (USCF), though Elo’s system would not be published until the

late 1970s (Elo, 1978). It is unclear whether Elo was aware of the development of

the Bradley-Terry model, which served as the basis for his rating approach.

Suppose time is discretized into periods indexed by t = 1, . . . ,T . Let θ̂it be

the (estimated) strength of team i at the start of time t. Suppose during period t
team i competes against teams j = 1, . . . ,J with estimated strength parameters θ̂ jt .

Elo’s system linearly transforms the θ̂it , which are on the logit scale, to be on a

scale that typically ranges between 0 and 3000. We let

Rit =C+

(
400

log10

)
θ̂it

to be the rating of team i at the start of time period t, where C is an arbitrarily

chosen constant (in a chess context, 1500 is a conventional choice). Now define

We(Rit ,R jt) =
1

1+10−(Rit−R jt)/400
(6)

to be the “winning expectancy” of a match. Equation (6) can be understood as an

estimate of the expected outcome yi j of a match between teams i and j at time t
given their ratings.

The Elo rating system can be described as a recursive algorithm. To update

the rating of team i based on competition results during period t, the Elo updating

algorithm computes

Ri,t+1 = Rit +K
J

∑
j=1

(yi j −We(Rit ,R jt)) (7)

where the value of K may be chosen or optimized to reflect the likely change

in team ability over time. Essentially (7) updates a team’s rating by an amount

that depends on the team’s performance (the yi j) relative to an estimate of the

expected score (the We(Rit ,R jt)). The value K can be understood as the magnitude

of the contribution of match results relative to the pre-event rating; large values

of K correspond to greater weight placed on match results relative to the pre-

event rating, and low values of K connote greater emphasis on the team’s pre-

event rating. In some implementations of the Elo system, the value K depends on
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the team’s pre-event rating, with larger values of K set for weaker ratings. This

application of large K for weaker teams generally assumes that weaker teams have

less stable strength and are more likely to change in ability.

Initial ratings by first-time teams in the Elo system are typically set in one

of two ways. One approach is to estimate the team’s rating by choosing a de-

fault starting rating Ri0, and then updating a rating using a large value of K.

This is the approach implemented in the PlayerRatings R library described by

Stephenson and Sonas (2016) in its implementation of the Elo system. An al-

ternative approach, sometimes used in organized chess, is to compute a rating

as a maximum likelihood estimate (e.g., for a Bradley-Terry model) based on a

pre-specified number of matches, but treating the opponents’ pre-event ratings

as known in advance. Once an initial rating is computed, then the ordinary Elo

updating formula in (7) would apply thereafter.

2.5. GLICKO RATING SYSTEM

The Glicko rating system (Glickman, 1999) was to our knowledge the first rating

system set in a Bayesian framework. Unlike Elo’s system in which a summary of

a team’s current strength is a parameter estimate, the Glicko system summarizes

each team’s strength as a probability distribution. Before a rating period, each

team has a normal prior distribution of their playing strength. Match outcomes
are observed during the rating period, and an approximating normal distribution

to the posterior distribution is determined. Between rating periods, unobserved in-

novations are assumed to each team’s strength parameter. Such assumed innova-

tions result in an increase in the variance of the posterior distribution to obtain the

prior distribution for the next rating period. West et al. (1985), Glickman (1993)

and Fahrmeir and Tutz (1994) describe Bayesian inference for models that are

dynamic extensions of the Bradley-Terry and Thurstone-Mosteller models. The

Glicko system was developed as an approximate Bayesian updating procedure

that linearizes the full Bayesian inferential approach.

A summary of the Glicko system is as follows. At the start of rating period t,
team i has prior distribution of strength parameter θit

θit ∼ N(μit ,σ2
it ). (8)

As before, assume team i plays against J opposing teams in the rating period, each

indexed by j = 1, . . . ,J. The Glicko updating algorithm computes
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μi,t+1 = μit +
q

1/σ2
it +1/d2

J

∑
j=1

g(σ jt)(yi j −Ei j) (9)

σi,t+1 =

(
1

σ2
it
+

1

d2

)−1

+δ 2

where q = log(10)/400, and

g(σ) =
1√

1+3q2σ2/π2
(10)

Ei j =
1

1+10−g(σ jt)(μit−μ jt)/400

d2 =

(
q2

J

∑
j=1

g(σ jt)
2Ei j(1−Ei j)

)−1

,

and where δ 2 (the innovation variance) is a constant that indicates the increase

in the posterior variance at the end of the rating period to obtain the prior vari-

ance for the next rating period. The computations in Equation (9) are performed

simultaneously for all teams during the rating period.

Unlike many implementations of the Elo system, the Glicko system requires

no special algorithm for initializing teams’ ratings. A prior distribution is as-

sumed for each team typically with a common mean for all teams first entering

the system, and with a large variance (σ 2
i1) to account for the initial uncertainty in

a team’s strength. The updating formulas in Equation (9) then govern the change

from the prior distribution to the approximate normal distribution.

By accounting for the uncertainty in team’s strength through a prior distribu-

tion, the computation recognizes different levels of reliability of strength estima-

tion. For example, suppose two teams compete that have the same mean strength,

but one team has a small prior variance and the other has a large prior variance.

Suppose further that the team with the large prior variance wins the match. Under

the Elo system, the winning team would have a mean strength increase that equals

the mean strength decrease by the losing team. Under the Glicko system, a differ-

ent dynamic takes place. Because the winning team has a high prior variance, the

result of the match outcome has a potentially great impact on the distribution of

team strength resulting in a large mean increase. For the losing team with the low

prior variance, the drop in mean strength is likely to be small because the team’s

ability is already reliably estimated and little information is gained from a loss to

a team with a large prior variance. Thus, the winning team would likely have a
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mean strength increase that was large, while the losing team would have a mean

strength decrease that was small. As of this writing, the Glicko system is used in

a variety of online gaming leagues, including chess.com.

2.6. GLICKO-2 RATING SYSTEM

The Glicko system was developed under the assumption that strengths evolve over

time through an auto-regressive normal process. In many situations, including

games and sports involving young competitors, competitive ability may improve

in sudden bursts. This has been studied in the context of creative productivity,

for example, in Simonton (1997). These periods of improvement are quicker than

can be captured by an auto-regressive process. The Glicko-2 system (Glickman,

2001) addresses this possibility by assuming that team strength follows a stochas-

tic volatility model (Jacquier et al., 1994). In particular, Equation (5) changes

by assuming εit ∼ N(0,δ 2
t ), that is, the innovation variance δ 2

t is time-dependent.

The Glicko-2 system assumes

logδ 2
t = logδ 2

t−1 +νt (11)

where νt ∼ N(0,τ2) and where τ is the volatility parameter.

The updating process for the Glicko-2 system is similar to the Glicko system,

but requires iterative computation rather than involving only direct calculations

like the Glicko system. The details of the computation are described in Glickman

(2001). The Glicko-2 system, like the Glicko system, has been in use for various

online gaming leagues, as well as for over-the-board chess in the Australian Chess

Federation.

2.7. STEPHENSON RATING SYSTEM

In 2012, the data prediction web site kaggle.com hosted the FIDE/Deloitte Chess

Rating Challenge in which participants competed in creating a practical chess rat-

ing system for possible replacement of the current world chess federation system.

The winner of the competition was Alec Stephenson, who subsequently imple-

mented and described the details of his algorithm in Stephenson and Sonas (2016).

The Stephenson system is closely related to the Glicko system, but includes

two main extra parameters. First, a parameter is included that accounts for the

strengths of the opponents, regardless of the results against them. A rationale for

the inclusion of the opponents’ strengths is that in certain types of tournaments

in which teams compete against those with similar cumulative scores, such as

knockout or partial elimination tournaments, information about a team’s ability
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can be inferred by the strength of the opponents. Second, the Stephenson system

includes a “drift” parameter that increases a team’s mean rating just from having

competed in an event. The inclusion of a positive drift can be justified by the

notion that teams who choose to compete are likely to be improving.

The mean update formula for the Stephenson system can be written as

μi,t+1 = μit +
q

1/σ2
it +1/d2

J

∑
j=1

g(σ jt)(yi j −Ei j +β )+λ (μ̄t −μit) (12)

where μ̄t = J−1 ∑J
j=1 μ jt , the average pre-event mean strength of the J opponents

during period t, β is a drift parameter, and λ is a parameter which multiplies the

difference in the average opponents’ strength from the team’s pre-period strength.

An implementation of Stephenson’s system can be found in Stephenson and Sonas

(2016).

3. DATA AND RATINGS IMPLEMENTATION

Women’s beach volleyball game data and end-of-year rankings were downloaded

from http://bvbinfo.com/, an online database of international volleyball tour-

nament results going back to 1970. All match results from FIVB-sanctioned tour-

naments from the years 2007-2015 were compiled, keeping record of the two

teams involved in a match, the winner of the match, and the date of the match. We

used match data from 2007-2014 to construct ratings from the four probabilistic

rating systems, leaving match outcomes during 2015 for validation.

The data set consisted of 12,241 match game results. For the 2007-2014

period in which the rating systems were developed, a total of 10,814 matches

were included, leaving 1427 match results in 2015 for validation. The matches

were played by a total of 1087 unique teams. For our analyses, we considered a

single athlete who partnered with two different players as two entirely different

teams. This is a conservative assumption for our analyses because we treat the

same player on two different teams as independent. However, this assumption can

be justified by acknowledging that different levels of synergy may exist between

player pairs.

During the 2007-2015 period, 72 teams played in at least 100 matches. The

greatest number of matches any player pair competed in our data set was 550. At

the other extreme, 243 teams competed exactly once in the study period.

The probabilistic rating systems described in Section 2 were implemented in

the R programming language (R Core Team, 2016). The core functions to perform
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rating updates of the Elo, Glicko and Stephenson systems were implemented in

the PlayerRatings library (Stephenson and Sonas, 2016). We implemented the

Glicko-2 system manually in R.

We optimized the system parameters of the probabilistic rating systems in the

following manner. Matches from 2007-2014 were grouped into rating periods of

3-month periods (January-March 2007, April-June 2007, . . ., October-December

2014) for a total of 32 rating periods. The period lengths were chosen so that

team strengths within rating periods were likely to remain relatively constant, but

with the possibility of change in ability between periods. Given a set of candidate

system parameters for a rating system, we ran the rating system for the full eight

years of match results. While updating the ratings sequentially over the 32 peri-

ods, we computed a predictive discrepancy measure for each match starting with

month 25, and averaged the discrepancy measure over all matches from month 25

through 32. That is, the first 75% of the rating periods served as a “burn-in” for

the rating algorithms, and then the remaining 25% served as the test sample.

The match-specific predictive discrepancy for a match played between teams

i and j was

−(yi j log p̂i j +(1− yi j) log(1− p̂i j)) (13)

where yi j is the binary match outcome, and p̂i j is the expected outcome of the

match based on the pre-period ratings of teams i and j. This criterion is a constant

factor of the binomial deviance contribution for the test sample. This particular

choice has been used to assess predictive validity in Glickman (1999) and Glick-

man (2001). It is also a commonly used criterion for prediction accuracy (called

“logarithmic loss,” or just log loss) on prediction competition web sites such as

kaggle.com.

For the Elo system, p̂i j was the winning expectancy defined in (6). For the

Glicko, Glicko-2 and Stephenson systems, the expected outcome calculation ac-

counts for the uncertainty in the ratings. The expected outcome is therefore com-

puted as an approximation to the posterior probability that team i defeats team j.
Glickman (1999) demonstrated that a good approximation to the posterior proba-

bility is given by

p̂i j =
1

1+10
−g(

√
σ2

i +σ2
j )(μi−μ j)/400

(14)

where the function g is defined as in (10).

The optimizing choice of the system parameters is the set that minimizes the

average discrepancy over the test sample. We determine the optimal parameters

through a the Nelder-Mead algorithm (Nelder and Mead, 1965), an iterative nu-
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merical derivative-free optimization procedure. The algorithm is implemented in

the R function optim.

4. RESULTS

The probabilistic rating systems were optimized as described in Section 3. The

following parameter values were determined to optimize the mean predictive dis-

crepancy in (13):

Elo: K = 19.823

Glicko: σ1 = 200.074 (common standard deviation at initial rating period), c =
27.686

Glicko-2: τ2 = 0.000177, σ1 = 216.379, c = 30.292

Stephenson: σ1 = 281.763, c = 10.378, β = 3.970, λ = 2.185

The resulting mean predictive discrepancy across the test sample of matches is

reported in Table 2. In addition to the mean predictive discrepancy measure, we

also calculated a misclassification rate of match results for the 25% test sample.

For each match in the test sample, a result was considered misclassified if the

expected score of the match was greater than 0.5 for the first team in the pair

according to the pre-match ratings and the first team lost, or if the expected score

was less than 0.5 and the first team won. Matches involving teams with equal

ratings were ignored in this computation.

Tab. 2: Rating system summaries based on optimized parameter values. The first column
reports 10, 000 ××××× the mean log loss score from the 25% test sample. The second

column reports the fraction of matches in which the result went the opposite of the
favored team according to the pre-match ratings.

Rating 10, 000 × Misclassification

System mean log loss Rate

Elo 2652.55 0.318

Glicko 2623.03 0.319

Glicko-2 2622.08 0.319

Stephenson 2590.72 0.310
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Fig. 1: Plots of average score and 95% confidence intervals computed from the 25% test
sample for the favored team against the predicted proba- bility of winning for each

of the four probabilistic rating systems.
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Elo Glicko-2

Glicko Stephenson

The table indicates that the Elo system had the worst predictive accuracy

in terms of log loss, followed by the Glicko and Glicko-2 systems which had

comparable predictive accuracy. The accuracy based on the misclassification rate

were similar for Elo, Glicko and Glicko-2. The Stephenson system had the best

predictive performance of the four systems with a lower mean log loss, and a

slightly lower misclassification rate.

The rating systems were assessed for calibration accuracy as shown in Fig-

ure 1. For each rating system, we sorted the pre-match predicted probabilities for

the 25% test sample relative to the higher-rated team (so that the winning prob-

ability was 0.5 or greater). These probabilities were divided into 10 consecutive

groups. Within each group, we computed the average result for the higher rated

team along with the endpoints of a 95% confidence interval. Each confidence

interval along with the sample mean across the 10 groups was plotted as a ver-

tical segment. If a rating system were well-calibrated, the pattern of confidence

intervals would fall on the line y = x (shown as diagonal lines on the figure).
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Generally, the rating systems are all reasonably well-calibrated. In the case of
Elo, Glicko and Glicko-2, small rating differences tend to underestimate the better
team’s performance, and in all cases large rating differences tend to over- estimate
performances (indicated by the right-most confidence interval being en- tirely
below the diagonal line). Elo has the least calibration consistency, with the fewest
confidence intervals intersecting the diagonal line, and Glicko, Glicko-2 and
Stephenson have the best calibration.

Tables 3 through 7 show the rankings at the end of 2014 of women’s beach
volleyball teams according to the different rating systems. Table 3 ranks teams
according to total FIVB points (the sum over the two players in the team) while the
ranks for the remaining tables are based on the order of the probabilistically-
determined ratings.

Tab. 3:  Top 15 teams at the end of 2014 according to FIVB points.

Rank Team Country Points

1 Maria Antonelli/Juliana Felisberta Brazil 6740

2 Agatha Bednarczuk/Barbara Seixas Brazil 5660

3 April Ross/Kerri Walsh Jennings United States 5420

4 Fan Wang/Yuan Yue China 4950

5 Madelein Meppelink/Marleen Van Iersel Netherlands 4640

6 Katrin Holtwick/Ilka Semmler Germany 4610

7 Karla Borger/Britta Buthe Germany 4580

8 Kristyna Kolocova/Marketa Slukova Czech Republic 4420

9 Elsa Baquerizo/Liliana Fernandez Spain 4360

10 Marta Menegatti/Viktoria Orsi Toth Italy 4140

11 Ana Gallay/Georgina Klug Argentina 3920

12 Talita Antunes/Larissa Franca Brazil 3620

13 Carolina Salgado/Maria Clara Salgado Brazil 3400

14 Maria Prokopeva/Evgeniya Ukolova Russia 3220

15 Natalia Dubovcova/Dominika Nestarcova Slovak Republic 3000

The probabilistic rating systems produce rank orders that have notable
differences with the FIVB rank order. The team of Ross/Walsh Jennings is always
either in first or second place on the probabilistic lists, but is third on the FIVB list.
The top 10 teams on the FIVB list do appear on at least one probabilistic rating list,
but it is worth noting that a non-trivial number of teams on the probabilistic rating
lists do not appear on the FIVB top 15 list. For example, a team like Antunes/Franca
are consistently in the top of the probabilistic rating systems, but is only ranked 30
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in the FIVB rankings. This suggests that this team is having strong head-to-head
results despite not achieving the tournament success of the top teams. The Elo top
15 list even includes a team ranked 83 on the FIVB list.

We compared the predictive accuracy of the four rating systems along with the
FIVB system based on ratings/rankings at the end of 2014 applied to match results
during 2015 in the following manner. A total of 1427 matches were recorded in
2015. Of the 1427 matches, 787 involved teams both having FIVB rankings in 2014
(only 183 teams appeared on the 2014 end-of-year FIVB list). We removed 4 of
these games from our analyses as they involved teams with the same FIVB (tied)
rank. We therefore restricted our predictive analyses to these 787 – 4 = 783 matches.
The result of each match played in 2015 was considered misclassified if the team
with the higher rank from 2014 lost the match. Table 8 summarizes the
misclassification rates for all five rating systems. The table indicates that the FIVB
has the worst misclassification rate with greater than 35% of the matches incorrectly
predicted. The Elo system is not much better, but Glicko, Glicko-2 and Stephenson
have rates as low as 31-32%. McNemar’s test (McNemar, 1947) for comparing the
FIVB misclassification rate to the misclassification rates of the probabilistic
systems was performed, with the p-values reported on Table 8. The difference in
misclassification rates between the FIVB and Stephenson’s system has a significantly
low p-value (0.019), while the other differences are not significant at the 0.05 level.

Tab. 4: Top 15 teams at the end of 2014 according to Elo ratings.

Rating Team Country FIVB Rank

1850 April Roùss/Kerri Walsh Jennings United States 3

1839 Talita Antunes/Larissa Franca Brazil 12

1819 Talita Antunes/Taiana Lima Brazil 30

1775 Kristyna Kolocova/Marketa Slukova Czech Republic 8

1773 Maria Antonelli/Juliana Felisberta Brazil 1

1744 Laura Ludwig/Kira Walkenhorst Germany 32

1727 Agatha Bednarczuk/Barbara Seixas Brazil 2

1727 Katrin Holtwick/Ilka Semmler Germany 6

1700 Carolina Salgado/Maria Clara Salgado Brazil 13

1687 Madelein Meppelink/Marleen Van Iersel Netherlands 5

1686 Fernanda Alves/Taiana Lima Brazil 26

1674 Karla Borger/Britta Buthe Germany 7

1672 Elsa Baquerizo/Liliana Fernandez Spain 9

1665 Fan Wang/Yuan Yue China 4

1662 Doris Schwaiger/Stefanie Schwaiger Austria 83
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Tab. 5:  Top 15 teams at the end of 2014 according to Glicko ratings.

Rating Team Country FIVB Rank

1918 April Ross/Kerri Walsh Jennings United States 3

1903 Talita Antunes/Larissa Franca Brazil 12

1847 Talita Antunes/Taiana Lima Brazil 30

1763 Maria Antonelli/Juliana Felisberta Brazil 1

1748 Laura Ludwig/Kira Walkenhorst Germany 32

1747 Kristyna Kolocova/Marketa Slukova Czech Republic 8

1730 Agatha Bednarczuk/Barbara Seixas Brazil 2

1716 Madelein Meppelink/Marleen Van Iersel Netherlands 5

1714 Carolina Salgado/Maria Clara Salgado Brazil 13

1703 Fernanda Alves/Taiana Lima Brazil 26

1691 Katrin Holtwick/Ilka Semmler Germany 6

1684 Xinyi Xia/Chen Xue China 27

1674 Elsa Baquerizo/Liliana Fernandez Spain 9

1656 Karla Borger/Britta Buthe Germany 7

1652 Laura Ludwig/Julia Sude Germany 24

In addition to exploring the relationship between match outcomes in 2015 and
a binary indicator of whether a team was more highly ranked in a given rating
system, we investigated the relationship between match outcomes and the difference
in rank on the 2014 lists.  For this analysis, we included only matches involving
teams that were in the top 200 in the end-of-2014 ranked lists from each rating
system. This decision was to prevent the probabilistic rating systems incorporating
matches involving teams that were far down the list and would result in a poor
comparison to the analysis of matches involving FIVB-ranked teams. For each
match, we computed the difference between the rank of the winner and loser.
Boxplots of the match-specific rank differences appear in Figure 2. The figure
shows that the four probabilistic rating system produce distributions of rank
differences that are roughly comparable, with the Stephenson system having a
slightly higher median rank difference for won matches than the other probabilistic
systems. The FIVB system by comparison produces a substantially smaller median
rank difference across the match winners. A 95% confidence interval for the mean
rank difference based on FIVB 2014 rankings was (10.8, 15.5) whereas for the
Stephenson 2014 rankings the 95% confidence interval was (18.3, 30.5). Based on
simple two-sample t-tests, the mean rank differences between the FIVB and any of
the probabilistic rating system ranks were significantly smaller at very low levels
even conservatively accounting for test multiplicity.



250 Glickman, M.E., Hennessy, J., Bent, A.

Fig. 2: Boxplots of the distribution of differences in 2014 rankings for each match played in
2015 relative to the winner of each match. A large rank difference indicates that the

winner of a match had a much higher 2014 rank than the loser.
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Tab. 6:  Top 15 teams at the end of 2014 according to Glicko-2 ratings.

Rating Team Country FIVB Rank

1927 April Ross/Kerri Walsh Jennings United States 3
1914 Talita Antunes/Larissa Franca Brazil 12
1850 Talita Antunes/Taiana Lima Brazil 30

1766 Maria Antonelli/Juliana Felisberta Brazil 1
1754 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1754 Laura Ludwig/Kira Walkenhorst Germany 32
1734 Agatha Bednarczuk/Barbara Seixas Brazil 2
1720 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1716 Carolina Salgado/Maria Clara Salgado Brazil 13

1708 Fernanda Alves/Taiana Lima Brazil 26
1693 Katrin Holtwick/Ilka Semmler Germany 6
1684 Xinyi Xia/Chen Xue China 27
1678 Elsa Baquerizo/Liliana Fernandez Spain 9
1658 Karla Borger/Britta Buthe Germany 7

1657 Laura Ludwig/Julia Sude Germany 24
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5. DISCUSSION AND CONCLUSION

The four probabilistic rating systems considered here appear to demonstrate solid
performance in measuring women’s beach volleyball team strength. The rating
systems evidence roughly 31-32% misclassification rates for predicting future
matches (the Elo system is slightly higher). By comparison, the FIVB point-based
system has a greater than 35% misclassification rate. Given the fractional differences
in misclassification rates among the probabilistic systems, the 4% misclassification
difference is notable (and statistically significant comparing the FIVB and Stephenson
systems). At a more fundamental level, the rating systems provide a means for
estimating probabilities of match outcomes, a calculation not prescribed by the
FIVB system. Because the focus of the probabilistic systems is in forecasting match
outcomes, the ranked lists differ in substantive ways from the FIVB list. For
example, the number 1 team on the 2014 FIVB list, Antonelli/Felisberta, is not only
ranked lower on the probabilistic lists than the team Ross/Walsh-Jennings, but the
estimated probability based on the probabilistic rating systems is that Ross/Walsh-
Jennings would defeat Antonelli/Felisberta with a probability of between 0.71 and
0.75 for the Glicko, Glicko-2 and Stephenson systems.

Tab. 7:  Top 15 teams at the end of 2014 according to Stephenson ratings.

Rating Team Country FIVB Rank

2152 Talita Antunes/Larissa Franca Brazil 12
2105 April Ross/Kerri Walsh Jennings United States 3
2018 Talita Antunes/Taiana Lima Brazil 30
1915 Maria Antonelli/Juliana Felisberta Brazil 1
1900 Fernanda Alves/Taiana Lima Brazil 26
1885 Laura Ludwig/Kira Walkenhorst Germany 32
1879 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1859 Agatha Bednarczuk/Barbara Seixas Brazil 2
1843 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1826 Laura Ludwig/Julia Sude Germany 24
1823 Carolina Salgado/Maria Clara Salgado Brazil 13
1818 Xinyi Xia/Chen Xue China 27
1810 Katrin Holtwick/Ilka Semmler Germany 6
1781 Elsa Baquerizo/Liliana Fernandez Spain 9
1769 Marta Menegatti/Viktoria Orsi Toth Italy 10

Among the four probabilistic rating systems, the Stephenson system appears
to slightly outperform the other three. A curious feature of this system is that a
team’s rating increases due merely to competing regardless of the result. While this
feature seems to be predictive of better performance, which may be an artifact that
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teams who are improving tend to compete more frequently, it may be an undesirable
aspect of a system to be used on an ongoing basis to rate its teams. Teams could
manipulate their ratings by choosing to compete frequently regardless of their
readiness to compete. Nonetheless, for the purpose of predicting match outcomes,
this system does the best out of the probabilistic methods we have considered.

As mentioned previously, our approach to measuring women’s beach volleyball
team strength is conservative in the sense that we treat teams that share a player as
entirely distinct. For example, the teams Antunes/Franca and Antunes/Lima who
share Talita Antunes are both high on the probabilistic rating lists. In the probabilistic
rating systems, we treated these two teams as separate competitors, and did not take
advantage of Antunes being a member on both teams. Rating systems for beach
volleyball could arguably be improved by accounting for the players involved in
teams. Indeed, the FIVB system focuses on the players’ FIVB points in determining
a team’s points, and this is an important difference in the way rankings were
constructed. We argue, however, that it is not obvious how to account for individual
player strength contribution in the construction of team abilities within a probabilistic
system. One attempt might be to consider a team’s ability to be the average of the
two players’ ratings of the team. This approach has been used, for example, in
Herbrich et al. (2007). On the other hand, in a game like volleyball it may be that
the team strength is more determined by the skill of the worse player given that the
worse player is the source of vulnerability on the team. This is clearly an area for
further exploration and is beyond the scope of this paper. However, even treating
teams who share a player as entirely distinct still leads to the probabilistic rating
systems outperforming the FIVB system in predicting future performance.

Tab. 8: Misclassification rates for 783 matches played in 2015 based on rank orders at the
end of 2014, and McNemar’s test p-values comparing misclassification rates of the

probabilistic systems against the FIVB system.

Rating System Misclassification Rate p-value against FIVB

FIVB 0.3563 —
Elo 0.3448 0.550

Glicko 0.3282 0.128
Glicko-2 0.3244 0.074

Stephenson 0.3142 0.019

One weakness of the probabilistic systems in their most basic form is that they
do not distinguish between elite events and events on national tours that are not as
competitive. Teams competing in elite events may display performances that are
more representative of their underlying abilities and preparation. These events
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could therefore be considered more relevant in measuring team strength than lower-
prestige events. The FIVB system explicitly captures the difference in levels of
tournament prestige. Various modifications of the probabilistic systems can account
for different levels of prestige. The most direct change would involve having the
sum of residuals (difference of observed and expected outcomes) inflated or
deflated by a multiplicative constant that depends on the prestige of the event. Elite
events would be associated with larger multiplicative factors, which would reflect
the greater opportunity for teams’ ratings to change as a result of their observed
performance. Incorporation of these factors, or other related solutions, is an area for
further exploration and beyond the scope of this paper.

Should the FIVB be considering a probabilistic system as a replacement to the
existing point-accumulation system? An argument can be made that it should. The
point-based systems were developed in a setting where it was important for the
ranking system to require only simple arithmetic to perform the computation. With
the stakes being so high for whether teams are invited to elite tournaments, it is
arguably more important to rank teams based on systems with a probabilistic
foundation than to keep the ranking computation simple. Such a move would
involve a change in culture and a clarification of the goals of a ranking system, but
our feeling is that a probabilistic system is more consistent with the goals set for
identifying the best women’s beach volleyball teams.
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