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1. INTRODUCTION

In his opening lecture at the first scientific meeting of the Italian Statistical So-

ciety (SIS), held in Pisa-Italy the 9th of October 1939, Professor Corrado Gini

(1884 - 1965) strikingly and accurately discussed some of the possible dangers

connected to the widespread use of statistical tools, especially with regards to

the possible ambiguous interpretation of associated conclusions. Since then, due

to availability of relatively cheap and powerful computers, efficient software, and

diffuse systems for automatic data collection, the possibility of dangers has largely

increased. Here, we would like to discuss, among the many, a list of potential dan-

gers including some that could not even be imagined at the time of Gini’s lecture.

Although not exclusively, to some extent statistical analyses at that time were

mainly interested in relatively simple problems, most of which had been satis-

factorily and adequately solved by means of substantially heuristic and intuitive

methods. Nowadays statisticians are mostly interested in much more complex

problems, the solutions of which can hardly be done by heuristic and/or intuitive
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approaches. In fact, the heuristic-intuitive approach may often lead to simplistic

or unsatisfactory solutions. To avoid this, before going ahead proceeding with any

analysis one must refer to a well suited and well discussed theory and carefully ex-

amine the related methodology. Moreover, conditions under which statistical tools

are valid must always be accurately checked and explicitly taken into evidence in

applications, so that the results of his/her analysis have the proper interpretation.

Outside its conditions of validity no statistical tool can confer any clear credibil-

ity to results and to associated conclusions. With billions of variables per sample

unit [e.g., as with functional (continuous or almost continuous curves), financial,

shape and "omics" data, etc.] on a limited number of units, no simple method can

be reliable for all the related statistical problems.

Moreover, as Gini well emphasized, it is quite rare that a given problem can

be satisfactorily analyzed by examining only one aspect. Generally, more than

one aspect is of interest and the analysis is then conducted on each of them. From

a methodological point of view this multi-aspect analysis implies that several dif-

ferent tools are applied to the same data set, and so the consequent partial results

are necessarily dependent. A dependence that, on the one hand, in most cases

is difficult to work with and/or to model; from the other, it must be taken into

consideration while expressing the associated global statistical conclusions.

This presentation is organized as follows: in Section 2 we wish to discuss

on how can we extend inferential results from sample data to target population(s)

when selection-bias sample data are analyzed; Section 3 presents a criticism on

the use of a number of tests on the same data and choosing the best, so giving rise

to the p-hacking; Section 4 relates on the use of pre-tests of normality and ho-

moscedasticity before Student’s t; several other sources of possible malpractices

are presented in Section 5 and some concluding remarks are in Section 6; a list of

references is reported at the end.

2. EXTENDING INFERENCES

2.1 WHEN NUISANCE PARAMETERS ARE ESTIMATED

We borrow from Gini’s opening lecture (1939) the notion that when one extends

and interprets inferential results using one (or more) estimated nuisance pa-

rameter(s), or even a functional (a function of all parameters, such as the effect of

a treatment), “an element of uncertainty [. . . ] arises from the fact that, in such cal-
culation, we substitute the known approximate value [. . . ] to its -unknown- precise
value” (translation from Italian to English is our own).

This situation almost always arises when the underlying model depends on



Remembering Gini’s Opening Lecture at the First Scientific Meeting of the… 317

some unknown parameters or functionals where only a few of them are of interest

for actual inferences and all others are viewed as nuisance. A common example

of this situation is Student’s t-test, even when applied within its exact conditions

of validity, where the parameter of interest is the mean µ: a random sample X =

(X1, . . . ,Xn), n ≥ 2, from a normal distribution N (µ,σ2) with unknown variance

σ2. For testing H0 : µ = µ0 versus, for instance, H1 : µ > µ0 the uniformly most

powerful similar invariant (UMPSI) test statistic T =
X̄−µ0

σ̂
√

n is used, where X̄ =

∑n
i Xi/n and σ̂2 = ∑n

i (Xi − X̄)2/(n − 1). The reference null distribution of this

statistic is central Student’s t with n−1 degrees of freedom.

Once we have achieved the inferential conclusion by only working with the

summary statistics X̄ and σ̂ 2, for instance rejecting H0, the subsequent problem to

solve becomes: to which population is that inference valid?

To answer this question, suppose that two experimenters, E1 and E2, would

like to make inferences about their populations’ means. E1 works with population

P1 ∼ N (µ1,σ2
1) and E2 with P2 ∼ N (µ2,σ2

2). Imagine that both experimenters

obtain the same summary statistics from their n-dimensional sample data: X̄1 =

X̄2 = X̄ and σ̂2
1 = σ̂2

2 = σ̂2, and so the same value for the test statistics: T1 = T2 =

T . Thus, both would make the same inferential conclusion about the hypothesized

µ0, which is then valid for both populations P1 and P2. So, the rationale is: when
σ is unknown and inferences are based on its estimate σ̂ , such inferences can be
extended to all normal populations that assign positive probability density to σ̂ ,

i.e. dP(n)(σ̂)/dσ̂ > 0.

Thus, unless the population from which random data came from is well and

unambiguously established independently and previously of the experiment is car-

ried out and/or the summary statistics X̄ and σ̂2 are obtained, generally the infer-
ential extension is not just to one, but to a whole family of populations. For sim-

ple problems, where the parent population is easy to be precisely described before

data collection, this is a sort of standard situation and no ambiguity arises to which

population that inference is proper. It is not always so, as for instance with some

studies where C > 1 centres are involved and the analysis implies working by

only using summary statistics on C sub-populations (Liu et al., 2015). In most

of such situations, since data are typically collected by means of different pro-

tocols and selection-bias procedures, the global inference based on the summary

statistics [(X̄c, σ̂2
c), c = 1, . . . ,C], each pair being specific of a vaguely defined

population distribution, relates to a sort of an hypothetical and undefined mixture

of sub-populations.
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2.2 WHEN DATA ARE FROM SELECTION-BIAS SAMPLES

2.2.1 SOME GENERAL NOTIONS

It is common knowledge that in almost all clinical trials, due to economic, le-

gal, organizational, procedural, safety, and ethical reasons, the subjects to which

two or more treatments are randomly assigned are not a random sample from the

target population, that to which the study is addressed to. In fact, subjects are
typically selected from those who are elicited by several criteria and/or protocols

and who comply with the trial. Thus, the underlying selected population (as well

as the associated distribution of any variable of interest) is unknown and usually

extremely difficult, if not impossible, to model properly. As a consequence of the

many selection criteria the selected population is different from the target one.

To simplify the discussion, consider a trial with two levels of a treatment:

level 1, the old drug; level 2, the new drug. If the two drugs had exactly the

same effect, the corresponding null hypothesis would be H0 : X1
d
= X2, expressing

the fact that two underlying (and essentially unknown) response distributions P1

and P2 are equal. This hypothesis implies that the n = n1 + n2 observed data
X j = (Xji, i = 1, . . . ,n j), j = 1,2, are exchangeable (i.e., permutable) between
two treatments (or samples, or groups). Moreover and equally important, H0 true

implies that the pooled data set X = (X1,X2) = {Xi = X(i), i = 1, . . . ,n;n1,n2} is
a set of sufficient statistics for the underlying common distribution P, whatever it
is (continuous, discrete, ordered categorical, nominal categorical, unidimensional,

multidimensional, or even infinite dimensional). The notation X = {X(i), i =
1, . . . ,n;n1,n2} means that first n1 listed elements belong to the first sample and

the rest to the second: X1 = {X1i = X(i), i = 1, . . . ,n1} and X2 = {X2i = X(i), i =
n1 +1, . . . ,n2}, respectively.

If instead the new drug would likely give, for instance, greater values than

the old, the alternative hypothesis would be H1 : X1

d
< X2, expressing the fact that

the distribution representing responses of new drug stochastically dominates that

of the old. And so, under H1 two cumulative distributions satisfy P1(x)≥ P2(x) on

all real points x and the inequality is strict in a set of positive probability for both

distributions; whereas under H0 it is P1(x) = P2(x) on all real points.

Referring to a typical experiment, we call with ∆1 and ∆2 the effects of two

drugs. It is worth noting that, in this context, it is generally not appropriate to

assume that the difference of two effects ∆ = ∆2 −∆1 is simply additive and fixed
as in ∆ d

= δ , where δ is an unknown constant. In general ∆ can be either fixed or

random, and in the latter case not necessarily independent on the so-called natural
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errors ε , those one has when the related responses are expressed as in X = µ + ε
(see also point 5 in Section 5). In such situations, while modelling the alternative

behavior it is generally too hard to justify an assumption such as P1(x)=P2(x−∆),
in the sense that treatment may also affect the underlying dispersion or even other

aspects characterizing both distributions. In this case, the problem is a sort of

restricted specification for the Behrens-Fisher problem in which the heteroscedas-

ticity is only under H1, when two effects are different, and not under H0.

To the best of our knowledge, the only available exact inferential solutions

to the latter problem are essentially nonparametric. They involve using a condi-

tional permutation testing procedure, where the conditioning is taken with respect

to the pooled observed data set X, and permutations involve either the observed

plain data X or their rank transformations (Pesarin, 2001). The data set X, being

sufficient in H0 for the unknown common distribution P, is also assumed as the

leading term for the reference conditional sample space, denoted here with the

symbol Π(X). It is worth observing that:

(i) Π(X) contains the data set X and all its distinct permutations X∗, i.e.

Π(X) =
{⋃

u∗∈Π(u) [X(u∗i ), i = 1, . . . ,n;n1,n2]
}
,

where Π(u) is the set of all permutations u∗ of unit labels u = (1,2, . . . ,n);
(ii) each point X∗ ∈ Π(X) is also sufficient in H0 for P since, due to the assumed

exchangeability, it is fP(X) = fP(X∗), fP being the generalized density corre-

sponding to P(n);

(iii) hence, Π(X) is a sufficient space that corresponds to the orbit of points of

sample space X n containing the same information on P as that contained in X.

2.2.2. MAIN PROPERTIES OF PERMUTATION TESTS

R.A. Fisher (1936), who is considered the author of the permutation testing ap-

proach, wrote: “[. . . ] the statistician does not carry out this very simple and very
tedious process (if carried out by hand), but his conclusions have no justification
beyond the fact that they agree with those which could have arrived at by this
elementary method [. . . ]”.

The great computational complexity needed to conduct permutation tests

seems to have led Fisher to base statistical inference on the likelihood concept.

So, Fisher seems considering the role of traditional parametric testing to provide

an approximation of the null permutation distribution of a test.

Due to cheap and powerful computers and efficient software, permutation

testing methods have increased in number of applications and in solving com-
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plex multivariate problems. Prior to formally discussing the inferential extension

problem, we wish presenting the main and necessary properties of permutation

tests without formal proofs, that can be found in the book by Pesarin and Salmaso

(2010-a).

Without loss of generality, assume that large values of test statistics T : X n →
R1 are evidence against H0.

Property 1. Sufficiency of Π(X) for P under H0 implies that the null conditional
probability given Π(X) of every event A, member of a suitable collection A , is
independent of P; that is, ∀P and ∀A ∈ A ,

Pr{X∗ ∈ A;P|Π(X)}= Pr{X∗ ∈ A|Π(X)}.
Thus, since the number M(n) =∑Π(X) 1[X∗ ∈Π(X)] of points in Π(X) is finite

for finite sample size n, the null conditional probability of any A ∈A is calculated

as

Pr{X∗ ∈ A|Π(X)}= ∑X∗∈A fP(X∗)dX∗
∑X∗∈Π(X) fP(X∗)dX∗ = ∑Π(X)

1(X∗∈A)
M(n) ,

because for the assumed exchangeability it is fP(X∗)dX∗ = fP(X)dX for every

X∗ ∈ Π(X). A consequence of the latter relation is that all data permutations, i.e.
all elements of Π(X), are conditionally equally likely under H0.

Note that in carrying out the calculations for this conditional probability it is

not necessary to call upon the hypothetical repeated sampling principle (Cox and

Hinkley, 1974). That is, it is not necessary to examine the whole sample space

X n, which in turn has often a merely virtual existence. And so it is not neces-

sary to consider all sample points of X n that could have been realized. In fact,

since only the observed data X are taken into consideration, the determination of

Pr{A|Π(X)} requires the complete enumeration of Π(X) which has an objective
existence being made by all permutations X∗ of X and thus it is fully known just

after the data are available.

It is worth noting that the recourse to the hypothetical repeated sampling

principle is necessarily required by all parametric and semiparametric testing ap-

proaches. It is used once by the frequentist approach, where the reference is with

respect to the whole sample space X n. It is used twice by the traditional Bayesian

approach, where the reference is with respect to the product space Θ×X n, Θ be-

ing the space of parameters. It is also worth noting that the permutation testing
only requires the existence of an underlying latent likelihood fP, provided that

fP(X) > 0 on the observed data. The existence of that likelihood is exclusively

required to assure the sufficiency in H0 of the pooled data set X.

The fact that Pr{A|Π(X)} is P-independent in H0 has several nice conse-
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quences. A simple one is: suppose that a first experimenter knows the value of

standard deviation σ ∈R+ while a second ignore it, using a permutation test both

always arrive at the same conditional inference regarding the mean µ . Indeed,

suppose the first uses the statistic T ∗
I = (X̄∗

1 − X̄∗
2 )/σ and the second T ∗

II = X̄∗
1 ,

they share the same p-value statistic ∀X ∈X n and so two procedures are equiva-

lent in terms of inferential conclusions, i.e.

Pr{(X̄∗
1 − X̄∗

2 )/σ ≥ (X̄1 − X̄2)/σ |Π(X)}= Pr{X̄∗
1 ≥ X̄1|Π(X)}.

Thus, knowledge of σ , or more generally of any finite set of nuisance entities

regarding P, is irrelevant for permutation testing on µ or ∆.

In practice, when sample sizes (n1,n2) are not small, the cardinality of Π(X)

is too large to enumerate all possible permutations. To overcome this issue, the

probability Pr{A|Π(X)} can be estimated, to any degree of accuracy, by a condi-
tional Monte Carlo simulation on Π(X) as, for instance, by the four steps algo-

rithm:

• 1. Randomly take from Π(u) one of its equally likely permutations: u∗ =

(u∗1, . . . ,u
∗
n).

• 2. So, X∗ = {X(u∗i ), i = 1, . . . ,n;n1,n2} gives two permuted samples X∗
1 and

X∗
2.

• 3. Independently, repeat B times steps 1 and 2, obtaining the simple random

sample {X∗
b,b = 1, . . . ,B} from Π(X).

• 4. Thus, P̂(A|Π(X)) = ∑B
b=1 1(X∗

b ∈ A)/B gives an unbiased and consistent

estimate of Pr{A|Π(X)}.

Property 2. Assume that the exchangeability condition on data X is satisfied in
H0. Then the conditional rejection probability of any randomized test

φ R(X) =




1 if T o > Tα
γ " T o = Tα
0 " T o < Tα

,

for which E{φ R(X)|Π(X)}= α, ∀α ∈ (0,1), is X-P-invariant for all X ∈X n and
all P, where: X is the sample space for variable X , T o = T (X) is the observed
value value of statistic T on data X, Tα = Tα [X(0)] is the α-size conditional crit-
ical value which can be determined by complete enumeration of the permutation
sample space Π(X), and

γ = [α −Pr{T o > Tα |Π(X)}]/Pr{T o = Tα |Π(X)} .
Property 2 states the uniform similarity property of randomized permutation

tests; and corresponds to the stronger version of the Neyman α-structure of T .
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Since in practice the critical value Tα can be determined only if H0 is known to
be true, we use the observed p-value statistic defined as λ o = λT (X)=Pr{T (X∗)≥
T o(X)|Π(X)}. The latter is a non-increasing function of T o and is one-to-one re-

lated with the critical value Tα , since T o < Tα implies λ o > α , T o > Tα implies

λ o < α , and vice versa. Hence, α works as the critical value for λ o. Of course,

the statistic λ o coincides with the true p-value of test T if H0 would be true; then

it works as a p-value-like statistic.

Thus, the non-randomized version of test is

φ(X) =

{
1 if λ o ≤ α
0 " λ o > α .

Due to Property 1, under H0 we have E{φ(X)|Π(X)}=Pr{λT (X)≤α|Π(X)}=
α for every attainable α ∈ (0,1). In practice, the attainable support of λ T (X) is a

subset of the rationals ( k
M(n) , k = 1,2, . . . ,M(n)).

Property 3. Permutation tests for random positive alternatives (∆
d≥ 0) and based

on divergence of symmetric statistics of non-degenerate measurable non-decreasing
transformations of the data, i.e. T ∗(∆) = S1[X∗

1(∆)]− S2[X∗
2(∆)], where S j(·),

j = 1,2, are symmetric functions of their entry arguments (·), are conditionally
unbiased for every attainable α , every population distribution P, and uniformly
for every data set X ∈ X n. In particular

Pr{λ (X(∆))≤ α|Π(X(∆)} ≥ Pr{λ (X(0))≤ α|Π(X(0)}= α .
Thus, the p-value statistic under H1 is uniformly stochastically dominated by that

under H0, i.e. λ (X(∆))
d≤ λ (X(0)), ∀X ∈ X n.

One consequence of Property 3 is that if effects are such that ∆′ d
> ∆

d
> 0

d
>

∆′′, then p-value statistics satisfy: λ (X(∆′))
d≤ λ (X(∆))

d≤ λ (X(0))
d≤ λ (X(∆′′)),

which shows the uniform stochastic monotonicity of p-value statistics with respect

to ∆.
Observe that uniform similarity (Property 2) and uniform conditional unbi-

asedness (Property 3) require data exchangeability (i.e. the randomization of units

to treatments) and do not require a random sampling of subjects from a target

population. Thus, they also work with selection-bias sample procedures. In ad-

dition, it is worth mentioning that Property 3 provides for an exact solution of

the restricted form of the famous Behrens-Fisher problem where H0 : ∆ d
= 0 and

H1 : ∆
d
> 0 (details are in Pesarin, 2001, Chapter 10).

Property 4. The unconditional (or population) power of a permutation test T as
a function of ∆,α,T,P, and n = (n1,n2) is defined as
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W (∆,α,T,P,n) = EPn [Pr{λ T (X(∆))≤ α|Π(X)}]
=

∫
X n Pr{λ T (X(∆))≤ α|Π(X)} dP(n)(X).

Of course, W (∆,α,T,P,n)≥W (0,α,T,P,n) = α, ∀α > 0, since, by Property

3, the integrand is ≥ α for all ∆ > 0, all X ∈ X n, all distributions P, and all
sample sizes n.

Clearly, Property 4 implies unconditional unbiasedness and requires invok-

ing the hypothetical repeated sampling principle since the expectation operator

implies examining all points in the sample space X n.

It is straightforward to see that Property 4 can be extended to composite hy-

potheses such as H0 : ∆′′ d≤ 0 versus H1 : ∆
d
> 0, and to see that ∆′′ d

< 0
d
< ∆ implies

W (∆′′,α,T,P,n) ≤ W (0,α,T,P,n) = α ≤ W (∆,α,T,P,n), ∀P. The latter also

provides the P-uniform monotonicity of unconditional power function property of

T . In doing this it is essential to note that data exchangeability exactly works at

point ∆ d
= 0, which must not be a point of H1.

2.2.3  EXTENDING INFERENCES

The uniform similarity and uniform unconditional power (Properties 2 and 4, say),
jointly suffice to weakly extend conditional to unconditional inferences. To be

specific, they provide for the extension of inferential conclusions peculiar to the

list of observed units, for example as with: drug is effective on present sample
units (Lehmann, 2009), to conclusions related to the population P from which

units have been drawn, even when there is selection-bias, as with: drug is ef-
fective. To this end (for a detailed discussion see: Pesarin, 2002; Pesarin and

Salmaso, 2010-a), provided that subjects are randomized to treatments and that

dP(n)(X)/dX = fP(X)> 0, it is worth observing:

• for each attainable α and all sample sizes n = (n1,n2), Property 2 implies that

the type I error rate of T in H0 is such that W (0,α,T,P,n) = α, for all samples

X ∈ X n and all distributions P, independently of how units are selected (thus

including selection-bias samples);

• Property 4 implies that the population power W (∆,α,T,P,n) (the unconditional

rejection rate) is ≥ α, for all distributions P and independently of how data are

selected from X n.

Thus, if the conditions needed for permutation testing are satisfied, Properties

2 and 4 are sufficient, though not strictly necessary, for inference extensions. Vi-

olation of one or more of these conditions could make the inferential extensions
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improper, if not completely wrong. For instance, violation of randomization of

units to treatments, as sometimes may occur in observational studies (typical of

social and epidemiological surveys), can provide a completely wrong conclusion

about the population. Actually, as often occurs with meta-analyses, observing

populations with different characteristics that affect the outcome of interest (for

instance, observing old people in city A and young people in city B when we are

interested in socioeconomic variables) cannot directly provide any correct infer-

ential extension unless the effect of these confounding covariates is removed by a

suitable adjustment procedure.

If condition fP(X) > 0 is not satisfied on some points X of X n, since when

fP(X) = 0 data X are not yet sufficient for P, we can say nothing credible about

any of its sampling functionals. In facts, no rational conditional inference is pos-

sible because, formally, we cannot know if the related hypothetical conditional

rejection rate on those points is at least α. Points with zero density are unob-

servable with probability one, so that condition implies adopting some specific

caution on extensions we are looking for. In general, the extension (or extrapola-

tion, or inductive generalization) of any inference from experimental samples to
unobservable populations can only be done using supplementary knowledge and
auxiliary assumptions that are not guaranteed by the adopted experimental de-
sign. For instance, extending inferences from experiments on animals to humans

requires specific knowledge and/or hypothetical assumptions that are typically

external and auxiliary to the observed data X. Such extensions mostly rely on in-

formation that lies outside the given experiment and independently of the fact that

observed data X on animals can be numerically compatible also with humans.

For parametric tests, especially when there are nuisance entities to remove,

the extension of inferences from conditional to unconditional can generally be

done only if data are obtained by well-designed sampling procedures applied to

the entire target population distribution P, which must be clearly identified be-

fore data collection. When selection-biased data X are observed and the selection

mechanism is not well designed, not well modeled, or its “selection parameters”

are not consistently estimated with the data separately from the testing functionals

∆, no parametric approach can be invoked to achieve credible inferential exten-

sions. And so, since those conditions are rarely met in practice, there is no sense

to work outside the conditioning and the sufficiency principles of inference. This

conditioning strategy implies adopting the permutation testing principle (Pesarin,

2015). Thus, the extension made without considering such objections may be-

come a true malpractice with possible serious consequences.
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In any case it is important to emphasize that this kind of weak extension is

merely in terms of the presence of a non-null effect, as is typically done by testing

analyses. Nothing can be said directly on its precise size at population level both

with point and interval estimation. Indeed, the population effect size cannot be

deduced by only examining the conditional effect size, the one that is observed

on the actual sample, especially if it is selection-biased. In order to achieve good
unconditional estimates, i.e. to achieve reliable estimates of population effect

sizes, either one has to model the selection mechanism and estimate all its coef-

ficients independently from the summary statistics used in the testing process, or

one has to refer to a credible set of external and auxiliary information, which often

is merely hypothetical or even not at all available. These two conditions are not

commonly met in practice. Thus, the extension of conditional effect size to the

population level should be done with caution, if not always avoided.

The dangers of this situation often appear in surveys in which sample units

are recruited in a classroom, or in a street, or by post, or by telephone, or solicited

to voluntarily participating by TV spots, etc., where most of such units do not re-

spond (it is quite frequent that the rate of respondents is around 10%, or even less).

This method of recruiting participants is one way that typical selection-biased

samples arise. The acquired information cannot be regarded as representative of

the target population, because the selection mechanism is not -or cannot even be-

taken into consideration, due to known difficulty modeling it. Pre-electoral sur-

veys of last decades conducted on most countries are popular examples of very

wrong extensions to target populations. Consequently, results of this kind of sur-

veys should be regarded with caution, if not always suspected to induce misinfor-

mation. In this respect it is worth mentioning that Gini (1951) expresses quite a

similar point of view by saying “[. . . ] replacing a complete study with an incom-
plete one [. . . ] I took care to point out the dangers to which one is exposed if a
study, which is representative of a phenomenon regarding some characteristics, is
extended to other characteristics as well” (translation from Italian to English is

our own).

3. ON THE p-HACKING

When using available commercial software it is common practice for most statis-

ticians and users (not all, however) to analyze a data set by using a list of different

methods, especially test statistics. And in their report to choose the best one; e.g.

that provided with the smallest p-value or that presenting the most convenient re-
sult. This kind of practice, although not always wrong from a pure methodological
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view-point, is generally adopted without proper care, and so the associated final

conclusions could be misleading since it may induce users to adopt inferences

without any real control of inferential errors. For instance, one does not know

how far away from α is its true type I error rate. Actually, the practice of referring

to the marginal null distribution of the most convenient p-value leads to a very

wrong and sometimes a dishonest practice. This, because the many different test

statistics are jointly informative, each on a possible different aspect of the effect

of a treatment, and being functions of the same data they are necessarily depen-

dent. This dependence is generally much more complex than linear, and that must

be taken into consideration when making inferential conclusions. Such inferences

imply referring to the multdimensional null distribution of all those test statistics,

which is rarely known within a parametric setting. On the contrary, it can be

known, often in quite easy to check conditions, within the permutation approach.

Of course, it is not always wrong to examine a data set from a multiplicity

of different viewpoints. For instance, in terms of testing of hypotheses, it is typi-

cally unknown if there exists one best test statistic for H0 against H1 and to know

how it is computed and how it works. If the likelihood function is known, the

Neyman-Pearson lemma provides for the best test (most powerful) only for two-

point (simple) parametric hypotheses, e.g. as in H0 : θ = θ 0 versus H1 : θ = θ 1.

But when the hypotheses are composite, to construct good tests it is well-known

that some more stringent conditions are required. So that, in the general situation,

looking for the best test is quite often an unsolvable problem. Thus, it can be of

interest for users to examine the data set X using several test statistics, each spe-

cific to one aspect to put into evidence. This is especially true outside the regular

exponential family of distributions where, if the null hypothesis is true, the whole

data set X is minimal sufficient for the underlying distribution P. In such a case, as

X is n-dimensional, there cannot exist any unidimensional statistic T : Rn → R1

furnished with the property of summarizing the whole information contained in

X. So, no parametric method can aspire to be uniformly better than other com-

petitors, parametric or nonparametric. At most one has to stay within the notion

of admissibility for testing as is generally provided by the nonparametric combi-
nation (NPC) of a list of dependent permutation tests.

In order to reduce the loss of information associated with using only one

single overall statistic, it is possible to take account of a list of statistics suitable

for concurrent viewpoints, each fitted for summarizing information on a specific

partial aspect of interest for the problem, and so to find solutions within the so-

called multi-aspect methodology. The latter is based on the NPC (Marozzi, 2004,
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2007; Pesarin, 2001; Pesarin and Salmaso, 2010-a; Salmaso and Solari, 2005),

where the underlying dependence is processed in a nonparametric way without

the necessity of estimating the related unknown dependence coefficients. The

multi-aspect methodology has several nice features. Indeed, with some complex

problems it is often useful to consider a list (at most countable) of different sub-

problems each provided with a proper permutation test (for instance, with some

continuous responses the analysis may consider: the area under the curve, the

area under the curve over a given set of thresholds, a set of Fourier or wavelet

coefficients, a set of functional principal components, and so on).

As a matter of fact, with two partial tests (T1,T2), not one-to-one related,

the summarized information on P via the NPC is not uniformly smaller than that

summarized by each partial test separately. Really, since the resulting NPC test

is admissible, the result is that no partial test is uniformly better than the com-

bined one. One more feature of multi-aspect testing occurs when, by chance, the

underlying unknown distribution admits a best solution, T1 say, based on a unidi-

mensional sufficient statistic. Of course, T2 cannot add further information to that

summarized by T1. However, their NPC is asymptotically equivalent to T1, which

then becomes the leading test for the whole NPC procedure. As a consequence, by

the NPC no available information on P summarized by the list of test statistics is

lost asymptotically. So, the multi-aspect idea is suitable in most ordinary decision

problems where only one point of view is generally not sufficient for a complete

analysis.

A very important application of multi-aspect and the NPC is with problems

where the number of observed variables per unit is larger than sample sizes or,

even more intriguing, when they can be expanded to the infinite while that of units

remain fixed: n much less than the number V of observed variables. In particular,

this notion gives rise to the so-called finite-sample consistency (full details are in

Pesarin and Salmaso, 2010-a,b).

4. ON THE USE OF PRE-TESTS

Some handbooks of software instructions and of statistical methods written for

practitioners, for instance, suggest that when analyzing a two-sample univariate

problem, one should first check for normality (e.g. by means of the Shapiro-Wilk

test), then to check for homoscedasticity, (e.g. by the F-test), and to proceed with

the Student’s t-test for testing on equality of means if neither pre-test rejects its

null sub-hypothesis.

The reference null distribution of the t-test is (central) Student’s t with proper
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degrees of freedom if both parent distributions of the data are normal with the

same means and variances. However, if two distributions are normal with un-

equal means and same variances the t-test is non-central Student’s t distributed. If

the two distributions are normal with different variances and unknown ratio, both

null and alternative distributions are essentially unknown. In the literature this is

known as the Behrens-Fisher problem, for which there are thousands of contribu-

tions devoted to deriving reliable approximations for such distributions. Among

these, a reasonably good one is attributed to Welch (1938), where for the null it

is used a Student’s t with random degrees of freedom depending on the ratio of

two variance estimates. If the distributions are non-normal, no parametric solution

based on the likelihood ratio behavior can be set-up.

The underlying problem is then quite intriguing. For instance, when test-

ing homoscedasticity after failing to reject the null hypothesis of normality, one

should refer to the null distribution of the F statistic conditional on acceptance of
normality by the Shapiro-Wilks test. Let SW (X) denote the Shapiro-Wilks statis-

tic computed on the data X. Then the appropriate probability statement for this

conditional test is

Pr{F(X1,X2)≤ Fg1,g2
(α)|[SWC(X1,X2)≤ SWC(α)]}

where, since normality should be tested separately on the two samples, SWC is

a suitable combination of SW (X1) and SW (X2) and SWC(α) is the appropriate

critical value for SWC. However, it is worth noting that this conditional statement

for the F-test is essentially unknown and possibly very different from the central

F-distribution with appropriate degrees of freedom

Pr{F(X1,X2)≤ Fg1,g2
(α)|[Xj ∼ N (µ j,σ2), j = 1,2]}.

Somewhat more intriguing is the reference null distribution of the t statistic

upon acceptance of both SWC and F-tests, because

Pr{t(X1,X2)≤ tg(α)|[SWC(X1,X2)≤ SWC(α)]
⋂
[F(X1,X2)≤ Fg1,g2

(α)]}

is likely impossible to determine and absolutely different from the central Stu-

dent’s t distribution, given by

Pr{t(X1,X2)≤ tg(α)|[Xj ∼ N (µ,σ2), j = 1,2]}.
To the best of our knowledge, at the moment no one knows how to obtain

such conditional null distributions, since failure to reject normality does not im-

ply two distributions are truly normal, just as failure to reject homoscedasticity

does not imply two distributions are actually homoscedastic. As regards to pre-

testing for normality, we remember having read a suggestion such as: use the less
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powerful test if you wish to accept normality so as to avoid using ranks while test-
ing for central tendency. In our opinion this is a very misleading and intrinsically

dishonest suggestion.

The authoritative conclusion of Lehmann (2009) is much better suited. He

essentially suggests to never use any parametric test when a nonparametric com-
petitor is available. When an optimal parametric test works in its ideal condi-

tions, there exists a nonparametric permutation competitor whose power behavior

is asymptotically equivalent (Hoeffding, 1952). In practice the loss of efficiency

by using a nonparametric test is generally negligible and vanishes at a fast rate

with increasing sample sizes. On the contrary, if the parametric test works out-

side its ideal conditions, the efficiency of nonparametric competitors can be even

infinitely better. Ludbrook and Duddley (1998) make a conclusion in the same

vein.

Regarding the two-sample problem, consider two typical settings: (I) the ex-
perimental model, where subjects are randomized to treatments; (II) the obser-
vational model, where subjects simply belong to their respective sub-populations

and are observed as they are. In (I) the typical null hypothesis states that there

is no difference of effects between two treatments, i.e. H0 : ∆1
d
= ∆2 ≡ X1

d
= X2,

whereas in the alternative treatments may also have effects on variances or even

on other aspects of the underlying distributions. In (II) a typical null hypothesis

states the equality of means, medians, or some quantiles, without any reference to

the homoscedasticity which then is not assumed.

For experimental problems (I), permutation tests based on rank transforma-

tions or on plain data give rise to exact solutions, i.e. uniformly unbiased and

so forth. These tests only require the exchangeability condition is satisfied in H0

but do not require homoscedasticity in H1, provided that it is either X1

d
> X2 or

X1

d
< X2 (see Property 3 in section 2.2). Moreover, when conditions for the t-test

are exactly met, permutation tests based on plain data are at least asymptotically

equivalent to it (Hoeffding, 1952).

For observational problems (II), instead, no exact parametric solution can be

invoked (Scheffé, 1943). There are permutation nonparametric solutions (Pesarin,

2001, Chapter 10) which are almost exact, i.e. robust with respect to the ratio of

two variances, and asymptotically coincident with the best parametric test under

the condition of normality and knowledge of two variances. This holds even in

multivariate settings. Thus, one need not check these conditions using pre-tests

because, due to Properties 1 to 4, the permutation solutions are intrinsically robust

to their violation.
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In our opinion, the malpractice of using pre-tests is mostly induced by the

great facility to press buttons with some commercial software. The result of failing

to condition appropriately on pre-tests leads to misleading p-values and serves to

discredit the field of Statistics.

5. SOME OTHER SOURCES OF MALPRACTICE

5.1 HOTELLING’S T 2

With two-sample multivariate problems testing for H0 : µ1 = µ2 against H1 : µ2 =

µ1 +∆, ∆ �= 0, it is generally suggested to use Hotelling’s T 2 test. When the data

are multivariate normal with equal, unknown covariance matrices, Σ1 =Σ2, the

T 2 is qualified to be optimal within the unbiased, similar, invariant tests (Cox and

Hinkley, 1964). These properties are sometimes assumed without any justification

for their validity or their usefulness to the actual problem, and without considering

the impact of their violation in real problems. This is especially important for the

invariance property.

We first report some simulation results for sample sizes n1 = n2 = 10 and

multivariate normal distribution with Σ = I, supposed unknown, and increas-

ing number V of variables. We compare Hotelling’s T 2 and the simplest of its

permutation competitors. The latter test is based on the direct combination of V
partial tests. The statistic is T ′′∗

D = ∑V
h=1[X̄

∗
h1 − X̄∗

h2]
2/σ̂2

h, where X̄∗
h j = ∑i X∗

h ji/n j,

σ̂2
h = ∑ ji(Xh ji − X̄h j)

2/(n− 2), for samples j = 1,2, are the permutation sample

means and sample variance of the vth variable, v = 1, . . . ,V. Note that all σ̂2
h are

invariant over data permutations. The major differences between the two tests are

that T 2 is conditional on the minimal sufficient statistics for the common covari-

ance matrix Σ (which must be estimated from the data) and parametrically takes

account of linear dependence on variables, whereas T ′′∗
D is conditional on maximal

sufficient statistics and nonparametrically takes account of all underlying depen-

dences.

The following simulation results on the power of T 2 and T ′′∗
D are reported

from Brombin and Salmaso (2013).

Simulation results are based on B = 1000 random permutations, MC = 1000

Monte Carlo runs, values for α = 0.01 (in normal character) and α = 0.05 (in

bold face). These results show that:

(i) as V increases, the power of Hotelling T 2 increases up to a maximum and

then decreases to a minimum for V = n− 2 (after then it cannot be calculated

without introducing restrictions on Σ);
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(ii) power of T ′′
D increases monotonically with V, up to unity;

(iii) power of T ′′
D is not invariant with respect to alternatives lying at Ma-

halanobis distance from H0 and so in some circumstances it can even be more

powerful than T 2, which is the uniformly most powerful among the unbiased,

similar and invariant tests (T ′′
D is simply unbiased and consistent);

(iv) T ′′
D requires homoscedasticity only in H0 but not in H1 and does not

require multinormality and linear dependence among variables; it only requires

monotonic dependence and so it can be applied in many more circumstances than

T 2 (Blair et al., 1994), including multivariate ordered categorical and/or mixed

variables;

(v) the fact that when V → ∞ the power of T ′′
D tends to one has important

applications in problems where the number of observed variables per subject is

larger than sample sizes, i.e. when V >> n as in most "omics" data.

Moreover, in some literature on statistical process control (Montgomery, 2007),

as well as for the analysis of "omics" and other high-dimensional data (Thulin,

2014, and references therein), T 2 is usually recommended when several variables

are considered. Three quite stringent conditions for its correct use are: (a) treat-

ment effects do not influence variances and correlations; (b) all considered vari-

ables must have the same degree of importance (for the technological and eco-

nomical quality assessment, or for the physiological and clinical impact); (c) all

deviations from zero must be considered to be equally important. Of course, if that

is appropriate for the problem at hand, if the underlying multivariate distribution

is assumed to be normal, and if the number V of variables is small compared to

sample sizes, there is no stringent reason to use something other than the paramet-

Tab. 1: Power of T2 and T`//*, for n1 = n2 = 10,  µ1 = 0, ∆ = 0.40

V T2 T//*

4 .079 / .219 .081 / .237

8 .063 / .234 .126 / .347

12 .037 / .186 .176 / .436

15 .027 / .118 .231 / .484

18 .013 / .067 .253 / .543

19 .244 / .544

22 .340 / .618

25 .365 / .656
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ric Hotelling’s T 2. But, if for some variables it is of interest to test for restricted

(one-sided) alternative, as for instance µv2 > µv1 or the like (as when for some

variables the kind of alternative is larger than the target), or when all variables

do not have the same degree of importance for the analysis (e.g., in evaluating

the reliability performance of cars, brakes are much more important than internal

lamps), or some treatment effects are possibly random, then the nonparametric

permutation via the NPC provides for efficient solutions. Forcing the use of T 2 in

those enlarged conditions may become a real malpractice.

The NPC strategy, that works in accordance with Roy’s union-intersection

method (Roy, 1953; Sen, 2007; Pesarin et al., 2016; also of interest are: Romano,

1990; Wellek, 2010), decomposes a test of hypotheses into a list of K partial tests

as H0 : X1
d
= X2 ≡

K⋂
k=1

H0k against H1 : X1

d
<�=> X2 ≡

K⋃
k=1

H1k, and supposes the

existence of a suitable partial permutation test for each sub-hypothesis H0k against

H1k (without loss of generality, it is also assumed that large values of each par-

tial test are evidence for the respective sub-alternative). The partial tests are then

suitably combined as a function of their statistics, Tψ = ψ[(Tk,wk),k = 1, . . . ,K],

where wk ≥ 0 is the degree of importance assigned to the kth sub-hypothesis. One

simple and practical solution for this kind of problem is to use Fisher’s combining

rule, TF =−∑k wk logλ k, where λ k = Pr{Tk(X∗)≥ Tk(X)|Π(X)} is the permuta-

tion p-value statistic of partial test Tk (the whole theory and the related method-

ology of multivariate permutation tests is in Pesarin, 2001; and in Pesarin and

Salmaso, 2010). Moreover, if one rejects the global null hypothesis, by using one

of the techniques for multiple testing (Bonferroni, Bonferroni-Holm, Simes, etc.)

the NPC method easily enables the researcher to find which variable or cluster

of variables is mostly responsible for that rejection. For instance, Bonferroni-

Holm technique only requires to put the K partial p-values in ascending order:

λ (1) ≤ λ (2) ≤ . . . ≤ λ (K), and so by sequentially declaring significant at size α
all partial tests that satisfy the rule: λ (k) ≤ α/(K − k+ 1). This similar possibil-

ity is not directly available to the T 2, unless the researcher conducts one separate

test for each variable, at the cost of an approximate (and often unknown) control

of inferential risks. This possibility, however, becomes impossible when, due to

its non monotonic power behavior for large K, T 2 fails rejecting H0 even in the

presence of large effects.

5.2 SOME FURTHER POSSIBLE MALPRACTICES

We wish now, without providing details, to list a few among the many further

sources of malpractices and/or abuses of statistical tools.
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• 1. In many applications, it is common to assume multinormality and homoscedas-

ticity when the number of variables V is large, without proper criticism. For uni-

variate problems there are heuristic suggestions to check normality, but for the

multivariate case it is much more difficult to have credible hints of multinormal-

ity. Moreover, when covariates are observed, frequently they are assumed (a) to

be linearly related with the variables of interest, and (b) the error components

are commonly assumed to be independent of covariate values. This is typically

assumed without explicit justification, which leads to the use of unknown approx-

imations and possibly bad results.

• 2. The assumption that missing data are missing completely at random, is some-

times invoked. This assumption is made mostly for convenience because, if not,

the testing solution may become too difficult or even impossible to attain (Sen,

2007). In the same vein for testing two (or more) survival functions, it is often

assumed without proper criticism that censored data are uninformative of the pos-

sible effect of a treatment, i.e. the censoring process is independent of treatments.

This gives rise to a possible malpractice whenever that uninformativeness is not

properly justified.

• 3. It is common to use univariate two-sided tests for the majority of testing

applications without a real justification or proper criticism. If there is a treatment

effect ∆ different from zero on all observed subjects, in general this is either pos-

itive or negative, but not both. In such problems, it could be of interest to find

inductively, via Bonferroni, which of two arms is significantly active, if any. It

should be emphasized that two partial tests, for one-sided alternatives H1< : ∆ < 0

and H1> : ∆ > 0, the respective statistics T< = X̄1 − X̄2 and T> = X̄2 − X̄1 are neg-

atively related with probability one. This issue appears in both parametric and

nonparametric approaches. However, the application of parametric approaches in

multidimensional settings may become extremely difficult or even impossible.

• 4. In some applications, for instance when the outcome of interest has a ge-

netic interaction, the effect ∆ could be positive on some subjects and negative on

others. The related testing problem becomes so complex that no parametric so-

lution is known. However, a satisfactory permutation NPC solution is available

(Bertoluzzo et al., 2013). For this kind of experiment, as 0 < Pr{∆ ≤ 0} < 1,

one should test for H0 : ∆ p
= 0 against H1 : (∆

d
< 0)

⋃
(∆

d
> 0), where two sub-

alternatives H+
1 : ∆

d
> 0 and H−

1 : ∆
d
< 0 can be jointly active. This problem

can be solved by jointly applying two tests, one on negative and one on posi-

tive deviations of empirical distribution functions. For instance, one may use two
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Kolmogorov-Smirnov tests:

and
T ∗

KS− = maxi≤n[F̂∗
1 (Xi)− F̂∗

2 (Xi)]
T ∗

KS+ = maxi≤n[F̂∗
2 (Xi)− F̂∗

1 (Xi)],

followed by their NPC. We emphasize that the two partial tests are dependent and

that such dependence is extremely difficult or even impossible to model. That is

why the parametric approach is not appropriate for such problems. Of course, to

make inference on which partial alternative(s) is (are) significantly active, all that

is required is to adjust for multiplicity the partial p-value statistics.

• 5. The assumption of additive effects when observations are obtained through

a monotonic increasing function ϕ of latent values Y is another source of errors.

If Y = η + εY is the underlying random variable and ∆ the effect, the observed

response when ∆ = 0 is X = ϕ(Y ), and when ∆ > 0 it is

X(∆) = ϕ(Y +∆) = ϕ(Y )+∆ϕ ′(η + εY +hY ∆),
ϕ ′ being the derivative of ϕ in a random point and hY a convenient point in

(0,1). Thus, the effect on X becomes a random quantity dependent on under-

lying unobservable errors εY even when the underlying effect ∆ on Y is fixed:

∆X = ∆ϕ ′(η + εY +hY ∆). It is worth noting that parametric solutions require the

separate estimate of the effect size ∆X and of the variance of underlying errors εX ,

and so they cannot be used in such circumstances. Ignoring this notion produces

a true malpractice. Permutation methods provide for correct solutions, since they

do not require such a separability.

• 6. In testing for difference of heterogeneity with nominal variables in two-

sample problems, it is usual to consider the respective distance from the uniform
distribution and then by building the test statistic as the difference between these
sampling distances. This, being a comparison between two non-central distribu-

tions, cannot assure a proper control of inferential risks (Arboretti et al., 2008).

Actually, testing the distance from the uniform distribution on a discrete distri-

bution, considered as the null hypothesis, is relatively easy to attain, usually by

means of the chi-squared test. But, as both are typically working under their

respective alternatives, the reference distributions of both tests are non-central

chi-squared, each with unknown non-centrality parameter. And so, for finite sam-

ple sizes the reference distribution of their difference X2
1 −X2

2 , possessing two

unknown non-centrality parameters to take into consideration, is unknown.

• 7. It is well-known that there are two-sample problems where data from one

group are difficult (or too expensive) to obtain and those from the other group

are easy (or quite inexpensive), as with some rare diseases. Formally, n1 is taken
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small and fixed and n2 is large and possibly divergent. In such cases, for instance

under normality, additive effects and homoscedasticity, the t-test has the form:

t(∆) = X̄1+∆−X̄2

σ̂ ·
√

n1n2

n1+n2
,

whose non-centrality parameter is δ t =
∆
σ̂

√
n1n2

n1+n2
, the limit of which is ∆

σ
√

n1 for

n2 →∞. The latter, being finite, implies that adding data from only one group does

not improve the inferential performance since the power remains asymptotically

bounded below 1. This malpractice gives rise to the false expectation that adding

data always improves the testing information.

• 8. In the presence of several p-values, for the global test it is sometimes sug-

gested to use their sum (Edgington and Onghena, 2007; Chang, 2007). This prac-

tice is suggested without analyzing the properties of that sum. Indeed, through

some counterexamples it is easy to prove its inconsistency (Pesarin and Salmaso,

2010, page 139). Thus, in the presence of a large amount of information on its

falsity there is a positive probability to do not reject the null hypothesis even

asymptotically. So, giving rise to a malpractice.

6. CONCLUDING REMARKS

We have put into evidence that while using statistical tools there are several risky

situations to which statisticians and users are exposed and to which they have to

pay due attention. Not always the use of such risky tools becomes a real malprac-

tice, since they are generally found to be correct within their peculiar conditions

of validity. Of course, when they are used outside their respective conditions of

validity, they may become proper malpractices. And so giving rise to improper

statistical conclusions and consequently providing discredit to statistics and even

to professional statisticians. Typically, the extensive use of optimal tools outside

their conditions of optimality often, in applications, gives rise to unjustified inter-

pretations of related results.

According to Gini’s suggestions, statisticians should pay the deserved atten-

tion while presenting their reports so as to avoid improper inferential risks and

related objective dangers generated by false or unjustified conclusions, together

with some associated bad reputation due to the induced discredit to statistics.
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