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In economic analysis, a variable is often supposed to influence an outcome

over several periods. Typical examples include the effect of public investments on

gross value added, the effect of investments in research and development on the

quality of commercial products, the effect of a change in income on consumption.

Linear regression with temporally delayed (lagged) instances of the explana-

tory variables, known as distributed-lag linear regression, is a widely used tool to

address these kind of problems. In distributed-lag linear regression, the lag shape

of an explanatory variable is the set of the coefficients associated to its lagged

instances. The practical application of distributed-lag linear regression critically

depends on the relationship among the coefficients composing the lag shape of

each explanatory variable. From a technical point of view, multicollinearity ea-

sily occurs because the lagged instances of the same explanatory variable tend to

be highly correlated, and the number of free parameters increases exponentially
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as a new explanatory variable is considered, so that least squares estimators can

have very high variance. From a theoretical point of view, the lag shape of an

explanatory variable should have a regular form. For example, the effect of an

investment may be small at first, then it may reach a peak before diminishing to

zero after some time lags. In this view, lag shapes with no constraints can imply

coefficients with different sign and/or following an irregular pattern, so that they

may be difficult to interpret.

In this paper, we present type II constrained lag shapes, a new family of

parametric lag shapes designed to represent theory-based lag structures through a

small number of parameters. Type II constrained lag shapes improve the Almon’s

polynomial lag shape (Almon, 1965) in terms of interpretability, and include the

well known endpoint-constrained quadratic (Andrews and Fair, 1992) and Gamma

(Schmidt, 1974) lag shapes. They were recently employed to perform dynamic

causal inference in Markovian structural causal models (Magrini, 2019b), and to

assess the impact of Agricultural research expenditure (Magrini et al., 2019).

The paper is structured as follows. In Section 2, distributed-lag linear re-

gression is presented. In Section 3, the family of type II constrained lag shapes

is defined, several members are shown and their least squares estimation is ad-

dressed. In Section 4, the proposed methodology is applied to assess the impact

of government expenditure and capital investments on international tourist arrivals

in Northern Europe. Section 5 includes concluding remarks and considerations on

possible future developments.

2. Distributed-lag linear regression

Let Y be the outcome and X = (X1, . . . ,Xp) be a set of p explanatory vari-

ables. Also, let yt and xi,t be the measurement of Y and Xi, respectively, at time t.
We assume that: (i) time is discrete, (ii) the outcome and the explanatory variables

are stationary, (iii) the influence of each explanatory variable on the outcome does

not depend on time but only on the temporal distance (lag). Under these assump-

tions, distributed-lag linear regression is defined as:

yt = β0 +
p

∑
i=1

Li

∑
l=0

βi,lxi,t−l + εt (1)

where βi,l is the coefficient for Xi at time lag l, Li is the number of time lags of Xi

being considered, and εt is the random error at time t.
The set βi = (βi,0,βi,1, . . . ,βi,Li) is denoted as the lag shape of explanatory

variable Xi and represents its influence on Y at different time lags. Note that the

2. DISTRIBUTED-LAG LINEAR REGRESSION
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case where explanatory variable Xi influences the outcome Y only instanta-

neously is obtained by setting Li = 0.

Lag shapes of the explanatory variables in model (1) can be consistently es-

timated using least squares provided that random errors are linearly uncorrelated

with the explanatory variables. The violation of this condition, known as en-

dogeneity, has several causes, like the omission of variables linearly correlated

with both the outcome and some explanatory variables (confounders), the pre-

sence of measurement errors, the simultaneous determination of some variables

(bi-directed causal relationships). Detecting and solving endogeneity goes be-

yond the scope of this paper, and it is not addressed here. A recent discussion of

the topic can be found in Antonakis et al. (2014).

Besides consistency of least squares estimators, consistent estimation of their

covariance matrix is also required to get reliable confidence intervals and signi-

ficance tests for model (1). Consistent estimation of the covariance matrix of

least squares estimatiors critically depends on the assumptions on the random er-

rors. Standard assumptions like independence and homoskedasticity hardly apply

to time series, because both the correlation between the random errors and their

variance may depend on time. A practical solution is to fit the regression model

(1) using least squares estimation, and then to compute the Heteroskedasticity and

Autocorrelation Consistent (HAC) covariance matrix of least squares estimators

(Newey and West, 1978).

3. Type II constrained lag shapes

As discussed above, the regression model (1) may entail several practical

problems, like multicollinearity, high number of free parameters and irregular lag

shapes. The Almon’s polynomial lag shape (Almon, 1965) addresses the problem

of multicollinearity and large number of free parameters by forcing the coeffi-

cients to follow a polynomial of order Q:

βi,l =
Q

∑
q=0

φi,q lq (2)

For instance, for Q = 2 we have βi,l = φi,0 +φi,1l +φi,2l2. However, the Almon’s

polynomial lag shape may still imply multiple modes and coefficients with diffe-

rent signs, which can be difficult to interpret. The endpoint-constrained quadratic

(Andrews and Fair, 1992) and the Gamma (Schmidt, 1974) lag shapes improve

the Almon’s lag shape in terms of interpretability: the former forces coefficients

3. TYPE II CONSTRAINED LAG SHAPES
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to follow a second order polynomial with endpoints constrained to value 0, while

the latter imposes an asymmetric non-polynomial function. Starting from these

two lag shapes, we designed type II constrained lag shapes, a new family of para-

metric lag shapes suitable to represent theory-based lag structures through a small

number of parameters. In the following subsections, type II constrained lag shapes

are defined, some notable members are illustrated and their least squares estima-

tion is addressed.

3.1. Definition

A type II constrained lag shape for explanatory variable X i is defined as:

βi,l = θi w(l;ai,bi) l = 0, . . . ,Li (3)

where θi is the scale parameter and w(l;ai,bi) is a function of the time lag map-

ping to the interval [0,1], called weight function, which depends on two param-

eters ai and bi, called shape parameters. The scale parameter determines the

maximum effect of Xi on Y at any time lag, while the weight function establishes

how the effect is distributed across the time lags. A type II constrained lag shape

is a reduced-dimensional representation of a lag shape: whichever the maximum

time lag Li considered, the lag shape is completely defined by one scale parameter

and by two shape parameters, as indicated by the term ‘type II’. An important

property is that the scale parameter defines the sign of the whole lag shape:

βi,l > 0 ⇐⇒ θi > 0

βi,l < 0 ⇐⇒ θi < 0
∀l : w(l;ai,bi) � 0 (4)

called sign monotonicity.

Consider, as an example, a lag shape decreasing linearly from a maximum

effect θi at lag ai to zero at lag bi. This lag shape, to which we refer as linearly
decreasing (LD) lag shape, has weight function:

wLD(l;ai,bi) =
bi − l
bi −ai

Iai≤l≤bi (5)

where I is the indicator function.

3.2. Some type II constrained lag shapes

As stated above, the endpoint-constrained quadratic (ECQ) lag shape (An-

drews and Fair, 1992) belongs to the family of type II constrained lag shapes. It

3.1 DEFINITION

3.2 SOME TYPE II CONSTRAINED LAG SHAPES
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has weight function:

wECQ(l;ai,bi) =

[
− 4

(bi −ai +2)2
l2 +

4(ai +bi)

(bi −ai +2)2
l − 4(ai −1)(bi +1)

(bi −ai +2)2

]
Iai≤l≤bi

ai,bi ∈ N ai ≤ bi
(6)

Basically, the ECQ lag shape is an Almon’s second-order polynomial lag shape,

but it is constrained to zero for l ≤ ai − 1 or l ≥ bi + 1. As such, it is symmetric

and has mode equal to θi at lag (ai +bi)/2.

The quadratic decreasing (QD) lag shape is the second-order polynomial ver-

sion of the linearly decreasing (LD) lag shape shown in Subsection 3.1:

wQD(l;ai,bi) =

[
l2 −2(bi +1)l +(bi +1)2

(bi −ai +1)2

]
Iai≤l≤bi

ai,bi ∈ N ai ≤ bi

(7)

The QD lag shape decreases from value θi at lag ai to value 0 at lag bi +1.

The Gamma lag shape (Schmidt, 1974) is another well known lag shape be-

longing to the family of type II constrained lag shapes. It has weight function:

wGAM(l;ai,bi) = (l +1)
ai

1−ai bl
i

[(
ai

(ai −1) logbi

) ai
1−ai

b
ai

(ai−1) logbi
−1

i

]−1

0 < ai < 1 0 < bi < 1

(8)

The Gamma lag shape is different from zero at any time lag, and is positively

skewed with mode equal to θi at lag ai
(ai−1) logbi

.

Note that, the shape parameters of the ECQ, QD and LD lag shapes represent

the endpoint of an interval of time lags where the effect of explanatory variable

Xi is not zero. Specifically, ai is the gestation lag, bi is the lead lag, and bi − ai

is the lag width. As such, the ECQ, QD and LD lag shapes degenerate into an

instantaneous effect if ai = bi = 0. Instead, the shape parameters of the Gamma

lag shape are not the gestation and the lead lags, and, since the Gamma lag shape

is different from zero at any time lag, it cannot reduce exactly to an instantaneous

effect. Note that, for the Gamma lag shape, the gestation lag is equal to zero and

the lead lag is not properly defined, but it may be approximated by the first time

lag after the mode where the weight function is lower than a tolerance threshold,

for example 10−4.



334 Magrini, A.

By replacing each βi,l in the regression model (1) with a type II constrained

lag shape, we get:

yt = β0 +
p

∑
i=1

Li

∑
l=0

θi w(l;ai,bi) xi,t−l + εt (9)

which can be written as:

yt = β0 +
p

∑
i=1

θix∗i,t + εt (10)

where:

x∗i,t =
Li

∑
l=0

w(l;ai,bi) xi,t−l

Thus, if the shape parameters ai and bi are known for i = 1, . . . , p, model (1)

becomes a classic linear regression where the explanatory variables are the trans-

formed variables X∗
1 , . . . ,X

∗
p . As such, least squares estimation can be applied to

estimate the scale parameters θ1, . . . ,θp. Once the regression model is fitted, the

HAC covariance matrix is computed and the standard error (SE) of the estimates

of each scale parameter is derived. Note that the standard error of the estimate of

Fig. 1: Examples of type II constrained lag shapes: i) endpoint-constrained quadratic
(ECQ); ii) quadratic decreasing (QD); iii) linearly decreasing (LD); iv) Gamma.

3.3 LEAST SQUARES ESTIMATION OF TYPE II CONSTRAINED LAG SHAPES
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βi,l , i.e., the coefficient for Xi at lag l, is:

SE(β̂i,l) = |w(l;ai,bi)| SE(θi) (11)

In real-world applications, the shape parameters are unknown, thus we have

to infer them from data. In general, the lag shape of variable Xi can be straight-

forwardly inferred from data if the shape parameters of all other explanatory varia-

bles are known. For instance, it is sufficient to fit several regression models by

varying the pairs of the shape parameters for Xi, and to select the one with the

minimum mean squared error (MSE):

MSEt∗ =
1

T − t∗
T

∑
t=t∗+1

(yt − ŷt)
2 (12)

where ŷt is the value of Y at time t predicted by the regression model, T is the

total number of periods and t∗ is the maximum among the lead lags implied by

all the pairs of shape parameters for Xi to be tested. Only the periods after t∗ are

considered in the computation in order to make the MSE comparable across all

the competing regression models.

The pairs of shape parameters for Xi to be tested can be either all the possible

ones if no prior knowledge is available, or a subset of the possible ones compatible

with prior knowledge. For instance, it is often the case that the researcher knows

that the gestation lag is comprised between two values, or that the lead lag is at

most a certain value, or that the lag width is at least a certain value. Thus, the

pairs of shape parameters not satisfying prior knowledge can be disregarded. The

procedure of inferring the shape parameters from data is denoted as adaptation, and

it is shown as Algorithm 1.

Note that the researcher may know the type II constrained lag shape for an

explanatory variable (e.g., an ECQ lag shape) and be uncertain on the shape pa-

rameters, but also may be uncertain on the type II constrained lag shape itself

(e.g., a Gamma, rather than a ECQ lag shape). The matrix PAR.TEST in Algo-

rithm 1 will include, in the first case, pairs of shape parameters of a single type

II constrained lag shape, while, in the second case, pairs of shape parameters of

several type II constrained lag shapes.

The procedure shown as Algorithm 1 assumes that the shape parameters of

all other explanatory variables are known. Unless p = 1, this is seldom the case

in real-world problems, and, if one wants to adapt p > 1 lag shapes altogether,

the number of regression models to be fitted would increase exponentially with p.

Algorithm 2 is a heuristic solution to jointly adapt p > 1 lag shapes with linear

complexity in p.
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Algorithm 2 Adaptation of p > 1 lag shapes

Require. For i = 1, . . . , p, a matrix PAR.TEST(i) containing in each row a pair of

shape parameters for Xi to be tested.

1. For i = 1, . . . , p, set PAR(i) equal to a pair of shape parameters implying a

gestation lag equal to the minimum among the gestation lags for Xi to be

tested, and lead lag equal to the maximum among the lead lags for Xi to be

tested. Set X.TEST = {1, . . . , p}.

2. Repeat until X.TEST is not empty:

• initialize MSE.TEMP as an empty vector of length p. For i = 1, . . . , p,

set PAR.TEMP(i) equal to PAR(i);

• for each value i in X.TEST:

– Adapt the lag shape of Xi using Algorithm 1 with inputs the pairs

of shape parameters in PAR.TEST(i) and the lag shapes as in

vectors PAR.TEMP(1), . . . ,PAR.TEMP(p). Set the i-th position

of MSE.TEMP equal to the resulting mean squared error, and

PAR.TEMP(i) equal to the resulting shape parameters;

• set PAR(h) equal to PAR.TEMP(h) and remove value h from X.TEST,

where h is the position with minimum value in MSE.TEMP.

3. Return PAR(1), . . . ,PAR(p).

Algorithm 1 Adaptation of one lag shape

Let Xi be the explanatory variable its lag shape should be adapted.

Require. A matrix PAR.TEST containing in each row a pair of shape parameters

for Xi to be tested. For j = 1, . . . , p\ i, a vector PAR( j) including the (known) shape

parameters of Xj.

1. Initialize MSE equal to +∞. For j = 1, . . . , p\ i, set PAR.OK( j) equal to

PAR( j).

2. For each row in PAR.TEST:

• set PAR(i) equal to the values in the current row of PAR.TEST;

• fit the distributed-lag linear regression with shape parameters as in

vectors PAR(1), . . . ,PAR(p);

• if the mean squared error is less than MSE, then:

– set MSE equal to the mean squared error;

– set PAR.OK(i) equal to PAR(i);

3. Return MSE and PAR.OK(i).
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The proposed family of lag shapes is applied to assess the impact of go-

vernment expenditure and capital investments on international tourist arrivals in

Northern Europe. We considered the following countries: Denmark, Estonia, Ice-

land, Finland, Latvia, Norway and Sweden in the period 1995–2016, downloading

yearly data from the World Tourism & Travel Council and the Eurostat databases.

We included several potential confounders: population, gross domestic product,

purchase power parity, employment in tertiary sector to total employment, number

of world heritage sites and a dummy variable for the economic crisis until 2012.

We did not include data on tourism infrastructures, as they are an intermediate

product of the causal chain linking government expenditure and capital invest-

ments to international arrivals. All variables were taken in log-return, excepting

the number of world heritage sites, which was taken in first order difference, and

the dummy for the economic crisis, which was not transformed. Stationarity of all

the time series was confirmed by the Kwiatkowski-Phillips-Schmidt-Shin (KPSS,

Kwiatkowski et al., 1992) test with p-values of the different countries combined

according to the method by Demetrescu et al. (2006). Descriptive statistics are

shown in Table 1, while Figure 2 shows the median log-return by year of interna-

tional arrivals, government expenditure and capital investments.

Fixed intercepts for the countries were assumed in order to take into account

the panel structure of data. Algorithm 2 was applied to adapt the lag shapes of

government expenditure and capital investments on international arrivals. In the

adaptation, we considered ECQ, QD, LD and Gamma lag shapes with maximum

gestation lag of 5 years, minimum lag width of 3 years and maximum lead lag

of 15 years. Standard errors were computed according to HAC estimation of the

covariance matrix of least squares estimators, with serial correlation order inferred

for each country based on the Akaike information criterion (AIC). The results are

shown in Tables 2-3 and Figure 3. All the computations and the graphics were

obtained using the R package dlsem (Magrini, 2019a).

Results show that the lag shape with the best fit to data for government expen-

diture is ECQ(0.2602,0,8), while for capital investments is ECQ(0.2492,1,14).

Both these two lag shapes have a statistically significant scale parameter. Note

that a statistically significant scale parameter implies that all the coefficients in

the lag shape are statistically significant, as it is apparent from confidence inter-

vals in Figure 3. The estimated lag shapes suggest that the effect of government

expenditure on international arrivals has zero year of gestation and lasts up to 8

years, while the effect of capital investments has one year of gestation and lasts up

4. READ–WORLD APPLICATION
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Variables in level Minimum 1st quartile Median 3rd quartile Maximum

International arrivals (×103) 190.0 1194.0 2313.5 4270.0 10781.0

Government expenditure (×106 USD) 10.0 30.0 132.2 237.9 677.7

Capital investments (×106 USD) 30.0 316.1 1231.8 2326.8 4472.1

Population (×103 people) 267.5 138.9 4642.0 5411.7 9903.1

Gross domestic product (×109 USD) 4.4 16.9 161.8 280.6 578.7

Purchasing power parity 0.3 0.5 8.4 9.2 141.0

Employment in tertiary sector (%) 52.4 65.8 71.2 75.7 79.7

Number of world heritage sites 0.0 1.0 4.0 6.0 12.0

Variables in return Minimum 1st quartile Median 3rd quartile Maximum

International arrivals 0.786 1.003 1.045 1.102 1.475

Government expenditure 0.337 1.000 1.000 1.034 2.707

Capital investments 0.298 0.921 1.048 1.182 4.770

Population 0.979 0.998 1.004 1.007 1.026

Gross domestic product 0.731 0.994 1.052 1.129 1.441

Purchasing power parity 0.904 0.991 1.005 1.019 1.226

Employment in tertiary sector (%) 0.944 1.001 1.004 1.013 1.060

Variables in log-return Minimum 1st quartile Median 3rd quartile Maximum

International arrivals −0.241 0.003 0.044 0.097 0.389

Government expenditure −1.088 0.000 0.000 0.034 0.996

Capital investments −1.211 −0.082 0.047 0.168 1.562

Population −0.021 −0.002 0.004 0.007 0.025

Gross domestic product −0.314 −0.006 0.051 0.122 0.365

Purchasing power parity −0.100 −0.009 0.005 0.019 0.204

Employment in tertiary sector (%) −0.057 0.001 0.004 0.012 0.058

Tab. 1: Descriptive statistics for the tourism data in Northern Europe countries, 1995–2016.

to 14 years.

The statistically significant and positive coefficients for population and power

purchasing parity indicate that both the propensity to spend or invest and the vol-

ume of international tourists depend directly on the size and on the price level

of a country. Instead, the coefficient of gross domestic product did not result

statistically significant, suggesting that the economic development level is not

a confounder for the investigated relationships once population and power pur-

chasing parity are taken into account. Also, the coefficient for the dummy for

economic crisis resulted statistically significant and negative, pointing out that

the level of tourism volume in the considered countries was lower before 2012.

Finally, the statistically significant intercepts for Norway and Sweden indicatea

lower tourism volume for these two countries at constant government expenditure,

capital investments, population, power purchasing parity and general economic

situation (crisis or not).
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Fig. 3: Estimated lag shape of government expenditure (left panel) and capital investments
(right panel) on international tourist arrivals in Northern Europe. Coefficients

represent percentage variations. Shaded regions represent asymptotic 95%
confidence intervals, where standard errors are based on HAC estimation of the

covariance matrix of least squares estimators.

Fig. 2: International arrivals, government expenditure and capital investments in Northen
Europe countries, 1995-2016 (median log-return by year).
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Tab. 2: Parameter estimation of the distributed-lag linear regression of international tourist
arrivals from government expenditure and capital investments in Northern Europe.

Lag shapes were adapted using Algorithm 2. Standard errors are based on HAC
estimation of the covariance matrix of least squares estimators. p-values are based

on a t-statistic with 34 degrees of freedom. Multiple R-squared is 0.755.

Outcome variable
International tourist arrivals (log-return)
Explanatory variables Estimate SE p-value
Government expenditure (log-return) ECQ(0.260, 0, 8) 0.081 0.003
Capital investments (log-return) ECQ(0.249, 1, 14) 0.059 0.000
Potential confounders Estimate SE p-value
Population (log-return) 14.422 3.615 0.000
Gross domestic product (log-return) 0.173 0.122 0.166
Purchasing power parity (log-return) 0.926 0.401 0.027
Employment in tertiary sector (log-return) –0.854 0.753 0.265
Number of world heritage sites (1st order difference) 0.039 0.033 0.240
Dummy for economic crisis –0.054 0.026 0.045
Intercepts Estimate SE p-value
Denmark –0.051 0.039 0.192
Estonia –0.044 0.032 0.177
Finland –0.059 0.029 0.052
Iceland –0.075 0.055 0.182
Latvia 0.024 0.084 0.780
Norway –0.283 0.067 0.000
Sweden –0.221 0.055 0.000

Government expenditure Capital investments

Lag Coefficient Cumulative coefficient Coefficient Cumulative coefficient

0 0.094 (0.029) 0.094 (0.029) 0.000 (0.000) 0.000 (0.000)

1 0.167 (0.052) 0.260 (0.059) 0.062 (0.015) 0.062 (0.015)

2 0.219 (0.068) 0.479 (0.090) 0.115 (0.027) 0.177 (0.031)

3 0.250 (0.077) 0.729 (0.119) 0.160 (0.038) 0.337 (0.049)

4 0.260 (0.081) 0.989 (0.144) 0.195 (0.046) 0.532 (0.067)

5 0.250 (0.077) 1.239 (0.163) 0.222 (0.052) 0.753 (0.085)

6 0.219 (0.068) 1.457 (0.177) 0.239 (0.057) 0.993 (0.102)

7 0.167 (0.052) 1.624 (0.184) 0.248 (0.059) 1.241 (0.118)

8 0.094 (0.029) 1.718 (0.186) 0.248 (0.059) 1.489 (0.131)

9 0.000 (0.000) 1.718 (0.186) 0.239 (0.057) 1.728 (0.143)

10 0.000 (0.000) 1.718 (0.186) 0.222 (0.052) 1.950 (0.152)

11 0.000 (0.000) 1.718 (0.186) 0.195 (0.046) 2.145 (0.159)

12 0.000 (0.000) 1.718 (0.186) 0.160 (0.038) 2.304 (0.164)

13 0.000 (0.000) 1.718 (0.186) 0.115 (0.027) 2.419 (0.166)

14 0.000 (0.000) 1.718 (0.186) 0.062 (0.015) 2.481 (0.166)

15 0.000 (0.000) 1.718 (0.186) 0.000 (0.000) 2.481 (0.166)

Tab. 3: Estimated lag shapes of government expenditure and capital investments on
international tourist arrivals in Northern Europe. Coefficients represent percentage
variations. The cumulative coefficient of an explanatory variable at lag l represent

its effect up to l time lags. Standard errors are shown within brackets.
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The cumulative coefficients at lag 14 were estimated as 1.718 and 2.481.

Since the variables are in log-return, this means that, after 14 years, international

arrivals are expected to increase approximatively by 1.7% for a unit percentage

increase in government expenditure at constant capital investments, and by 2.5%

for a unit percentage increase in capital investments at constant government ex-

penditure.

5. Concluding remarks

Distributed-lag linear regression is challenging in economic analysis, because

the explanatory variables may have a long lead lag and the lag shapes should

fit to some theoretical requirements. Unconstrained lag shapes may entail both

problems of inference, due to potential multicollinearity and large number of free

parameters, and of interpretation, due to the occurrence of multiple modes and

coefficients with different signs. The Almon’s polynomial lag shape is a well-

known parametric lag shape which may solve the problems of inference, but not of

interpretation. The family of type II constrained lag shapes presented in this paper

is an improvement of the Almon’s polynomial lag shape, also suited to represent

theory-based lag structures. A type II constrained lag shape is defined by a scale

parameter, determining the maximum effect of the explanatory variable at any

time lag, and by two shape parameters, establishing how the effect is distributed

across the time lags. This way, the problems of multicollinearity and large number

of free parameters are completely overcome. Also, a type II constrained lag shape

is characterized by parameters with clear economic interpretation. For instance,

the gestation lag, the lead lag and the lag width can be explicit parameters.

The family of type II constrained lag shapes includes the well known endpoint-

constrained quadratic and Gamma lag shapes. In this paper, we illustrated two

further members of the family, but several other members can be defined at con-

venience.

Least squares estimation of type II constrained lag shapes is straightforward

if all the shape parameters are known, or if the researcher is uncertain on a small

set of them. Instead, if the shape parameters are unknown, it is required to fit

a number of regression models increasing exponentially with the number p of

explanatory variables. A heuristic procedure with linear complexity in p was

proposed, and future work could be directed towards its improvement.

In order to achieve further flexibility, the family of type II constrained lag

shapes can be extended by allowing more than two shape parameters. In this case,

the proposed estimation procedure still applies, but k-uples of shape parameters,

with with k > 2, should be considered.

5. CONCLUDING REMARKS
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Numerical maximization of the log-likelihood is an alternative to least squares

estimation worthy of exploring in the future, as all the shape and the scale para-

meters could be estimated at one time.
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