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Abstract. Joint models analyse the effects of longitudinal covariates on the risk of one or
more events. The models are composed of two sub-models: a longitudinal model and a
survival model. The longitudinal sub-model is typically a multivariate mixed model that
considers fixed and random effects. The survival sub-model is usually a Cox proportional-
hazards model that jointly considers the influence of more than one longitudinal co-
variate on the risk of the event. This study extends the estimation method based on a
joint-likelihood formulation used in the univariate case to a multivariate longitudinal
sub-model. The parameters are estimated by maximising the likelihood function using
an expectation-maximisation algorithm. Here, the M-step employs a one-step Newton–
Raphson update because it is not possible to obtain a closed-form expression for some
of the parameter estimators. In addition, a Gauss–Hermite approximation is applied for
some of the integrals.
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1. INTRODUCTION

Joint models analyse the effects of longitudinal covariates on the risk of one or

more events. A longitudinal model and a survival sub-model compose the joint

models. The longitudinal sub-model is commonly a multivariate mixed model

that considers fixed and random effects. The survival sub-model is usually a Cox

proportional-hazards model that jointly considers the influence of more than one

longitudinal covariate on the risk of the event. This study extends the estima-

tion method based on a joint-likelihood formulation used in the univariate case

Rizopoulos (2012) to include a multivariate longitudinal sub-model. The param-

eters are estimated by maximising the likelihood function using an expectation-

maximisation (EM) algorithm. In the E-step a Gauss–Hermite approximation is

applied for some of the integrals, while the M-step employs a one-step Newton–

Raphson update because it is not possible to obtain a closed-form expression for
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some of the parameter estimators.

The first study to extend the joint model to include a multivariate longitudinal sub-

model was that of Xu and Zeger (2001a). They propose a latent-variable model

to jointly analyse the time to an event and repeated measures of multiple surro-

gate marker processes. The authors use two complementary approaches in which

they compare the lengths of the predictive intervals to determine whether using

multiple surrogate processes is better than using only one. They use a Markov

chain Monte Carlo (MCMC) algorithm to estimate the parameters of the model,

extending the univariate estimation method introduced by Xu and Zeger (2001b)

and Faucett and Thomas (1996). The authors apply the model and the estimation

method to schizophrenia trial data of risperidone, comparing the models with one

and three biomarkers. They find a gain in precision, but that this gain is not suffi-

cient to warrant the additional risk of bias from the more complex model.

Another work to conduct a joint analysis of time-to-event and multiple longitudi-

nal variables was that of Lin et al. (2001), who extend the univariate estimation

method of Wulfsohn and Tsiatis (1997). Their model allows for the simultane-

ous direct dependence of the event process on multiple longitudinal covariates,

in addition to accommodating correlations between the covariates. They use a

one-step-late EM algorithm to handle the direct dependence of the event process

on the modelled longitudinal variables, along with the presence of other fixed co-

variates in both processes. The authors apply this new method to a data set of a

beta-carotene trial, showing the benefits of the joint modelling of the longitudinal

and time-to-event variables.

Subsequently, Song et al. (2002) extended the univariate estimation method pre-

sented by Tsiatis and Davidian (2001) to a semi-parametric conditional score es-

timation. They assume a proportional-hazards regression model for the survival

sub-model, where the relationship between the hazard and the covariates is de-

fined by a function that allows for flexibility. They apply the model to a data set

on AIDS clinical trials, analysing the time trajectories of CD4 and CD8. Their

results show that this estimation method works well, which they confirm using a

simulation study.

Brown et al. (2005) propose a joint longitudinal and survival model with a non-

parametric model for longitudinal markers. They use cubic B-splines to specify

the longitudinal model, and a proportional-hazard model to link the longitudinal

measures to the hazard. After posing several priors and using various rules for the

approximations, the authors implement the Gibbs sampling method to estimate

the parameters of the model. Then, they conduct a simulation study and apply the
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model to an AIDS data set to determine the efficiency of the model. They show

that the cubic B-spline model provides a better fit to the longitudinal data than can

be obtained using simple parametric models.

Fieuws et al. (2008) also propose a multivariate mixed model, where they specify

a joint distribution for the random effects. They combine the univariate mixed

models into a multivariate mixed model by specifying a joint distribution for all

of the random effects. In order to obtain estimations, they use a pairwise mod-

elling strategy that fits all possible pairs of bivariate mixed models. Here, they use

a pattern-mixture approach, pseudo-likelihood theory, and a Monte Carlo integra-

tion. The authors applied this model to analyse renal graft failure using several

biomarkers.

Albert and Shih (2010) propose a regression calibration approach that appropri-

ately accounts for informative drop-out to jointly model multiple longitudinal

measurements and discrete time-to-event data. The authors argue that numeri-

cal integration techniques and the Monte Carlo method do not perform well, even

for moderately high-dimensional random effects. Therefore, they propose a two-

stage regression calibration approach. In the first stage, multivariate linear mixed

models are used to model the longitudinal data. In the second stage, the time-

to-event model is estimated by replacing the random effects with corresponding

empirical Bayes estimates. Here, the discrete event-time distribution is modelled

as a linear function of previous true values of the biomarkers, without measure-

ment error, on a probit scale. The benefits of the models are shown in a simulation

study in which they examine the effects of multiple longitudinal biomarkers on the

short-term prognosis of patients with primary biliary cirrhosis (PBC).

Rizopoulos and Ghosh (2011) propose a new semiparametric multivariate joint

model that relates multiple longitudinal outcomes to a time-to-event model. In

particular, they use a spline-based approach for the subject-specific longitudinal

evolutions, assume that the baseline risk function is piecewise constant, and model

the distribution of the latent terms using a Dirichlet process prior formulation. To

allow for flexible shapes of the subject-specific evolutions for each outcome, the

authors suggest using a spline-based approach. They propose three parametrisa-

tions of the function that links the longitudinal covariates and the risk of the event.

Then, they compare these in a simulation study and by analysing renal graft fail-

ure, using a Bayesian formulation for the joint semi-parametric multivariate joint

model.

Choi et al. (2014) implement a joint model for mixed multivariate longitudinal

measurements. Specifically, the authors formulate a unified Bayesian joint model
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for mixed longitudinal responses and time-to-event outcomes. They build the

log-likelihood for the observed data and implement a Bayesian approach for the

parameter inferences using the Gibbs sampling algorithm. Then, they apply their

estimation method in a simulation study and to mortality in a study on idiopathic

pulmonary fibrosis outcomes.

He and Luo (2013) develop a joint model that consists of a multilevel item re-

sponse theory model for the multiple longitudinal outcomes and a Cox proportional-

hazard model with piecewise constant baseline hazards for the event-time data.

Shared random effects are used to link the two models. Model inferences are con-

ducted using a Bayesian framework in an MCMC simulation, implemented in the

BUGS language. The model is applied to analysing Parkinson’s disease.

Hickey et al. (2016) conduct an interesting review of joint models of time-to-event

and multivariate longitudinal outcomes. The authors analyse longitudinal data, as

well as the distribution and model assumptions, association structures, estimation

approaches, software tools used in the implementation, and clinical applications

of the methodologies. They highlight that despite developments in this area, there

is a lack of software for estimating the parameters, which has translated into lim-

ited uptake by medical researchers. For this reason, Hickey et al. (2017) imple-

mented a new package in R, called the joineRML package. This package fits the

joint model proposed by Henderson et al. (2000), extended for multiple contin-

uous longitudinal measures. The time-to-event data are modelled using a Cox

proportional-hazards regression model with time-varying covariates, and the mul-

tiple longitudinal outcomes are modelled using a multivariate version of the Laird

and Ware (1982) linear mixed model. The association is captured by a multivari-

ate latent Gaussian process, and the parameters are estimated using a Monte Carlo

EM algorithm.

Recently, Mazzoleni (2018) implemented a two-stage approach for estimating

joint models with multivariate longitudinal sub-models. The author presents a

simulation study and applies the estimation method to analyse undergraduates’

paths in an Italian university, analysing the effect of one or more longitudinal co-

variates on the graduation event.

The model here proposed shows a different formulation from the models used by

Rizopoulos (2010) and by Hickey et al. (2017), in fact this work aims to extend

the model proposed by Rizopoulos (2010) using a multidimensional longitudinal

approach, analysing the relation between the hazard of the event and the true and

unobserved value of the longitudinal covariates, not only the relation between haz-

ard and random effects, as in Hickey et al. (2017). In addition, in the estimation
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method a Gauss–Hermite quadrature rule is used for the EM algorithm.

The remainder of the paper proceeds as follows. The second section presents the

model and the estimation method. The third and fourth sections provide a simu-

lation study and an application to a well-known data set, respectively. The final

section concludes the paper and proposes ideas for future research.

2. THE MODEL

The joint model comprises longitudinal and survival sub-models. A proportional-

hazard model is used for the survival sub-model, defined as a function of miq(t),
denoting the true and unobserved value of the longitudinal covariate q for subject

i:

hi(t|Mi(t),ωi) = h0(t)exp

[
γ ′ωi +∑

q
αqmiq(t)

]
. (1)

In (1):

• Mi(t) = {miq(s),0 ≤ s < t,∀q = 1, . . . ,Q} indicates the history of the true

unobserved longitudinal processes up to time t,

• αq quantifies the effect of the longitudinal outcome q on the risk of an event,

• h0(t) indicates the baseline hazard function, and

• ωi are the covariates that affect the risk of the event with coefficient γ .

In addition, in the survival sub-model Ti is the observed event time for the subject

i defined as the minimum of the potential censoring time and the true event time,

and δi is equal to 1 if the event occurs, 0 otherwise.

With regard to the longitudinal sub-model, the following linear multivariate mixed

model is proposed:


yiq(t) = miq(t)+ εiq(t)
miq(t) = x′iq(t)βq + z′iq(t)biq

εiq(t)∼ N(0,σ2
q )

b′i = (b′1q, ...,b
′
iQ)∼ N(0,D)

b1q, ...,bnQ,ε1q, ...,εnQ independent,

(2)

where q is the longitudinal variable index, yiq(t) is composed of miq(t) and a

random error term εiq(t), βq are the fixed effects for xiq(t), and biq are the random
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effects for ziq(t). σ2
q is the variance of the random error term and D denotes

random-effects variance–covariance matrix. These elements will be used in the

subsequent sub-section in matrix form: y′i = (y′1i, ...y
′
iq, ...,y

′
iQ) where each vector

yiq is composed stacking the single elements yiq(t), β = [β1, ...,βq, ...,βQ] and

σ2 = [σ2
1 , , ...,σ2

q , ...,σ2
Q]. In addition, Xiq and Ziq are the design matrices (with

corresponding row vectors x′iq(t) and z′iq(t)).
As anticipated in the introduction, the model formulation proposed is different

from the models used in Rizopoulos (2010) and Hickey et al. (2017). In fact,

Rizopoulos (2010) proposes an univariate formulation that relates the hazard of

the event with the true and unobserved value of a longitudinal covariate mi(t), as

follows:

hi(t|Mi(t),ωi) = h0(t)exp
[
γ ′ωi +αmi(t)

]
The main difference between this and the (1) lies in the parameter αq: a parameter

for each longitudinal covariate q is introduced (q = 1, . . . ,Q).

While, Hickey et al. (2017) propose a multivariate formulation analysing the rela-

tion between hazard and only the random effects biq, as follows:

hi(t|Mi(t),ωi) = h0(t)exp

{
γ ′ωi +∑

q
αq
[
z′iq(t)biq

]}

Whereas the model here proposed shows a multidimensional longitudinal exten-

sion of Rizopoulos (2010) model and relates the hazard of the event with the true

and unobserved value of each of the Q longitudinal covariates, recalling (1):

hi(t|Mi(t),ωi) = h0(t)exp

[
γ ′ωi +∑

q
αqmiq(t)

]
.

There are two classes of estimation methods, namely, the two-stage approach and

the joint-likelihood formulation. The two-stage approach is biased, but is less

computationally demanding, while the joint-likelihood method is more efficient,

but computationally slower.

The two-stage approach is based on two steps. In the first step, the random effects

are estimated using a least-squares approach. In the second step, the estimates

from the first step are used to impute appropriate values of miq(t), which are then

substituted into the classical partial likelihood of the Cox model.

The joint-likelihood method maximises the likelihood function using Bayesian or

classical methods.

Rizopoulos (2012) proposes a new estimation method based on a joint-likelihood
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formulation that maximises the log-likelihood function using the EM and Newton–

Raphson algorithms, and a Gauss–Hermite quadrature rule. The author supposes

that the vector of random effects bi underlies both the longitudinal and the survival

processes. Whereas, Hickey et al. (2016) maximise the joint-likelihood function

using a Monte Carlo EM algorithm.

2.1. THE JOINT-LIKELIHOOD APPROACH

The aim of the study is to extend the estimation method of Rizopoulos (2012)

to include a multivariate longitudinal sub-model. For each subject i, the classical

log-likelihood equation is defined as:

log p(Ti,δi,yi;θ) = log

∫
p(Ti,δi,yi,bi;θ)dbi

= log

∫
p(Ti,δi,yi|bi;θ ,β )p(bi,θ)dbi

= log

∫
p(Ti,δi|bi;θt ,β )p(yi|bi;θy)p(bi,θb)dbi

= log

∫
p(Ti,δi|bi;θt ,β )

{
∏

q
p(yiq|biq;θy)

}
p(bi,θb)dbi

where θ = (θ ′
t ,θ ′

y,θ ′
b)

′ denotes the full parameter vector, where θt are the pa-

rameters for the event-time outcome, θy are the parameters for the longitudinal

outcomes, and θb are the parameters of the random-effects variance–covariance

matrix. In the formula, θy = [β ′,σ2], θt = [γ ′,α1, ...,αq, ...,αQ,θh0
], where θh0

is used when the baseline hazard is parametric; and θb = [vech(D)]. The log-

likelihood can be separated into three parts, each of which is related to part of the

parameters vector.

The first part is related to the parameter vector θt (i.e. the parameters for the

event-time outcome), and is defined as follows:

p(Ti,δi|bi;θt ,β ) =

{
h0(Ti)exp

[
γ ′ωi +

Q

∑
q=1

αqmiq(Ti)

]}δi

exp

{
−
∫ Ti

0
h0(s)exp

[
γ ′ωi +

Q

∑
q=1

αqmiq(s))

]
ds

}
.

(3)

(3)
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The second part is related to the parameter vector θy (i.e. the parameters for the

longitudinal outcomes), and is defined as follows:

p(yi|bi;θy)=∏
q

p(yiq|biq;θy)=∏
q
(2πσ2

q )
−niq/2 exp

[
−‖ yiq −Xiqβq −Ziqbiq ‖2

2σ2
q

]
,

(4)

where ‖ · ‖ denotes the Euclidean vector norm.

Lastly, the third part is related to the parameter vector θb (i.e. the parameters of

the random-effects variance–covariance matrix), and is defined as follows:

p(bi;θb) = (2π)−R/2det(D)−1/2 exp

[−b′iD
−1bi

2

]
, (5)

where R = q1 + ...+qq + ...+qQ, where each qq indicates the number of random

effects considered for the longitudinal covariate q2.

In order to maximise the likelihood function, the following score function must

be considered (in Appendix the details):

S(θ) =
n

∑
i=1

Si(θ) =
n

∑
i=1

∂
∂θ

log p(Ti,δi,yi;θ)

= ∑
i

∫
A(θ ,bi)p(bi|Ti,δi,yi;θ)dbi,

where A(θ ,bi) =
∂

∂θ [log p(Ti,δi|bi;θt)+ log p(yi|bi;θy)+ log p(bi;θb)].

2.2. THE EM ALGORITHM

The EM algorithm is used to maximise the log-likelihood function, where the

random effects are treated as ‘missing data’.

Accordingly, in the E-step, the expected value of the complete data log-likelihood

2 Specifically, if the model of the random effect for the longitudinal covariate q considers only
the intercept, then qq = 1. However, if the model of random effects considers both the intercept
and the slope, then qq = 2.
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function that considers the random effects as missing data is:

Q(θ |θ (it)) = E[log p(y;θ)|y0;θ (it)] =
∫

p(ym,yo;θ)p(ym|yo;θ (it))dym

= ∑
i

∫
log p(Ti,δi,yi,bi;θ)p(bi|Ti,δi,yi;θ (it))dbi

= ∑
i

∫ [
log p(Ti,δi|bi;θt)+ log p(yi|bi;θy)

+ log p(bi;θb)

]
p(bi|Ti,δi,yi;θ (it))dbi.

A numerical integration procedure, such as the Gaussian quadrature rules, must

be employed for the integral with respect to the random effects.

E{A(θ ,bi)|Ti,δi,yi;θ}=
∫

A(θ ,bi)p(bi|Ti,δi,yi;θ)dbi

≈ 2R/2
K

∑
t1=1

...
K

∑
tR=1

wt1 ...wtRA(θ ,bt
√

2)p(bt
√

2|Ti,δi,yi;θ)exp(‖ bt ‖2),
(6)

where K denotes the quadrature points and bt = (bt1 , ...,btR) are the Hermite poly-

nomials’ roots with weights wt1 , ...,wtR .

In the M-step it is possible to obtain estimations for σ2
q and D in a closed-form

solution.

Beginning with σ2
q , for each q = 1, ...,Q, we have the following:

σ̂2
q = ∑

i

∫ ‖ yiq −Xiqβq −Ziqbiq ‖2

N
p(bi|Ti,δi,yi;θ)dbi

=
1

N ∑
i
(yiq −Xiqβq)

′(yiq −Xiqβq −2Ziqb̃iq)+ tr(Z′
iqZiqν̃biq)+ b̃′iqZ′

iqZiqb̃iq,

where

• b̃iq = E(biq|Ti,δi,yi;θ) =
∫

biq p(bi|Ti,δi,yi;θ)dbi

• ν̃biq = var(biq|Ti,δi,yi;θ) =
∫
(biq − b̃iq)

2 p(bi|Ti,δi,yi;θ)dbi.

Considering D, we can obtain the following:

D̂ =
1

n ∑
i

∫
bib′i p(bi|Ti,δi,yi;θ)dbi =

1

n ∑
i

ν̃bi + b̃ib̃′i. (7)
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For the other parameters, there is no closed-form solution. Thus, it is necessary to

use a one-step Newton–Raphson update:

β̂ it+1 = β̂ it −
{

∂
∂β

S(β̂ it)

}−1

S(β̂ it) (8)

θ̂ it+1
t = θ̂ it

t −
{

∂
∂θt

S(θ̂ it
t )

}−1

S(θ̂ it
t ), (9)

where β̂ it and θ̂ it
t denote the values of β and θt , respectively, at the current it-

eration it. In addition, S(β̂ it) and S(θ̂ it
t ) denote the corresponding blocks of the

Hessian matrix, evaluated at β̂ it and θ̂ it
t , respectively. For the evaluation of the

blocks of the Hessian matrix, the numerical derivative routine is used.

Then, starting with βq, it is possible to obtain the score function as:

S(βq) =
n

∑
i=1

Si(βq) =
n

∑
i=1

∂
∂βq

log p(Ti,δi,yi;θ)

= ∑
i

∫ {X ′
iq(yiq −Xiqβq −Ziqbiq)

σ2
q

+δiαqxiq(Ti)+

−exp(γ ′ωi)
∫ Ti

0
h0(s)αqxiq(s)exp

[
Q

∑
q=1

αqmiq(s)

]
p(bi|Ti,δi,yi;θ)ds

}
dbi,

To solve the integral, a numerical method is needed. Here, the Gauss–Hermite

quadrature is applied, as shown in equation (6). Accordingly, the former equation

becomes:

S(βq) ≈ ∑
i

2R/2
K

∑
t1=1

...
K

∑
tQ=1

wt1 ...wtR

{
X ′

iq(yiq −Xiqβq −Ziq(bt
√

2))

σ2
q

+δiαqxiq(Ti)

−exp(γ ′ωi)
∫ Ti

0
h0(s)αqxiq(s)exp

[
Q

∑
q=1

αqm∗
iq(s)

]
ds

}

p(bt
√

2|Ti,δi,yi;θ)exp(‖ bt ‖2),

posing m∗
iq(s) = x′iq(s)βq + z′iq(s)(bt

√
2) .

Then, for the parameters that analyse the effect of the exogenous covariate on the
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risk of the event γ , we have:

S(γ) =
n

∑
i=1

Si(γ) =
n

∑
i=1

∂
∂γ

log p(Ti,δi,yi;θ)

= ∑
i

ωi

{
δi − exp(γ ′ωi)

∫ ∫ Ti

0
h0(s)exp

[
Q

∑
q=1

αqmiq(s)

]
p(bi|Ti,δi,yi;θ)dsdbi

}
.

Applying the Gauss–Hermite quadrature, it results:

S(γ) ≈ ∑
i

ωi

{
δi − exp(γ ′ωi)

∫ Ti

0
h0(s)2R/2

K

∑
t1=1

...
K

∑
tR=1

wt1 ...wtR

exp

[
Q

∑
q=1

αqm∗
iq(s)

]
ds

}
.

In the next step, the parameter αq is analysed:

S(αq) =
n

∑
i=1

Si(αq) =
n

∑
i=1

∂
∂αq

log p(Ti,δi,yi;θ)

= ∑
i

∫ {
δimiq(Ti)− exp(γ ′ωi)

∫ Ti

0
h0(s)miq(s)exp

[
Q

∑
q=1

αqmiq(s)

]
p(bi|Ti,δi,yi;θ)ds

}
dbi.

Applying the Gauss–Hermite quadrature, it is obtained:

S(αq) ≈ ∑
i

2R/2
K

∑
t1=1

...
K

∑
tR=1

wt1 ...wtR

{
δim∗

iq(Ti)− exp(γ ′ωi)

∫ Ti

0
h0(s) m∗

iq(s)exp

[
Q

∑
q=1

αqm∗
iq(s)

]
ds

}
.

In each iteration, the baseline hazard is updated using a non-parametric estimation

based on the Breslow (Cox, 1972) method:

ĥ0(t) =
n

∑
i=1

δiI(Ti = t)

∑n
j=1 I(Ti ≤ t)

∫
exp(γ ′ω j +∑Q

q=1 αqm jq(t))p(bi|Ti,δi,yi; θ̂)dbi
,
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where I(·) denotes an indicator function that takes the value one if an event oc-

curs, and zero otherwise. In addition, the estimations of the random effects bi are

updated at each iteration using the conditional expected value:

b̄i =
∫

bi p(bi|Ti,δi,yi;θ)dbi,

where

p(bi|Ti,δi,yi;θ) =
p(Ti,δi|bi;θ)p(yi|bi;θ)p(bi;θ)

p(Ti,δi,yi;θ)
.

Convergence is achieved when the parameter estimates and/or the log-likelihood

are stable. The standard errors are estimated at convergence, recalling that:

ˆvar(θ̂) = [I(θ̂)]−1 where I(θ̂) =−
n

∑
i=1

∂Si(θ)
∂θ

∣∣∣
θ=θ̂

.

The standard errors for the joint models obtained using this estimation method

are underestimated. For this reason, the following empirical information matrix is

used (Scott, 2002):

Ie(θ) =
n

∑
i=1

Si(θ)S′i(θ)−
1

n

(
n

∑
i=1

Si(θ)

)(
n

∑
i=1

Si(θ)

)′
, (10)

where Si(θ) = ∂
∂θ log p(Ti,δi,yi;θ).

The standard errors are obtained from the empirical information matrix in the

usual way:

ˆvar(θ̂) = [Ie(θ̂)]−1.

The algorithm is as follows:

1. The initial values are estimated using the two-stage approach (Mazzoleni,

2018).

2. In the E-step, the expected value of the complete data log-likelihood func-

tion is used, considering the random effects as the missing data, in addition

to the Gauss–Hermite quadrature rule, as shown in formula (6).

3. In the M-step, for σ2
q and D, it is possible to obtain closed-form solutions.

However, for the parameters γ , αq, and βq, a one-step Newton–Raphson

update is implemented, as shown in formula (9). Then, in each step the

random effects and the baseline hazard are updated.
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4. Iterate between steps 2 and 3 until the algorithm converges, which occurs

when the parameter estimates and/or the log-likelihood are stable.

5. At convergence, the standard error for each parameter is calculated using

the empirical information matrix.

The algorithm was implemented in R using ad hoc code.

As anticipated in the introduction, the estimation method here proposed is dif-

ferent from that used in Hickey et al. (2017). Indeed, in addition to a different

formulation of the model, in this EM algorithm a Gauss–Hermite quadrature rule

is used, while Hickey et al. (2017) use a Monte Carlo EM algorithm.

3. SIMULATION STUDY

Here, we present three simulation studies, based on samples with 50, 100, and

200 units, respectively. Each simulated data set is composed of two longitudinal

covariates mi1(t) and mi2(t), a continuous exogenous covariate cont, and a binary

bin exogenous covariate. The following formula is used:


yi1(t) = β01 +β11t +β21cont +β31bin+bi01 +bi11t + εi1(t)

yi2(t) = β02 +β12t +β22cont +β32bin+bi01 +bi12t + εi2(t)

hi(t) = h0(t)exp[γ1cont + γ2bin+α1mi1(t)+α2mi2(t)]

(11)

The event times are simulated as in Austin (2013). In this simulation, the event

times follow a Gompertz distribution. Then, we have:

Ti =
1

ψti +α
log

{
1+

(ψti +α)(− log(ui))

λ exp(ψ ′
i xi)

}
, (12)

where λ > 0 and −∞ < α < ∞ are the scale and shape parameters, respectively,

of the Gompertz distribution and ui ∼U(0,1). In addition, for each subject i, ψti

is the sum of all time-dependent parameters and ψi is a vector of all parameters

that are not time dependent, and are related to the vector xi, which contains all

covariates that are not time dependent3. Independent right-censoring is also con-

sidered, but the censoring percentage is always lower than 30% in order to avoid

the influence of censoring on the parameter estimation and unstable results.

Table 1 contains the results of the simulation study with 50 units. The rate of con-

vergence when each data set contains 50 units is 89.4%. When we have so few

3 In the simulation studies (11), for each subject i, ψti = α1β11 +α1bi11 +α2β12 +α2bi12, and

ψ i = [γ1,γ2,α1β01,α1β21,α1β31,α1bi01,α2β02,α2β22,α2β32,α2bi02].
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Par. true mean MSE C.I. 95%

α1 0.5 0.4268 0.0224 (0.1871 ; 0.7037)

α2 -1 -0.8925 0.0491 (-1.2942 ; -0.5739)

β01 1 1.0476 0.0884 (0.4781 ; 1.6051)

β11 1 0.8286 0.0967 (0.3195 ; 1.3693)

β21 1 0.9775 0.0517 (0.5485 ; 1.4398)

β31 1 0.9466 0.1699 (0.2255 ; 1.7655)

β02 1 0.8906 0.1097 (0.3261 ; 1.5312)

β12 1 1.3854 0.2074 (0.8772 ; 1.8227)

β22 1 1.0254 0.0512 (0.5679 ; 1.4669)

β32 1 1.0232 0.1666 (0.1967 ; 1.8090)

γ1 1 0.9238 0.1158 (0.3540 ; 1.6838)

γ2 1 0.8933 0.2498 (0.0042 ; 1.9212)

units for each data set, the variance–covariance matrix D is not always invertible.

Based on the results, we can argue that the mean value of each parameter is close

to the true value, and that the 95% confidence interval contains the true value.

Table 2 contains the results for the simulation with 100 units. Here, we find that

increasing the number of units for each data set resolves the problem related to the

variance–covariance matrix D. In fact, the rate of convergence is now 100%. In

addition, the mean value of the parameter estimates is closer to the true value, the

mean squared error (MSE) has decreased, and the length of the 95% confidence

interval is shorter.

Table 3 contains the results of the simulation with 200 units. Once again, in-

creasing the number of units for each data set has moved the mean value of the

parameter estimates closer to the true value. In addition, the MSE has decreased

further and the length of the 95% confidence interval is shorter still.

In summary, increasing the number of units in each data set yields better results,

but also increases the computation time. The difference between the mean and the

true value is related to the limit on the computation time. Increasing the number

of units in each data set decreases this difference. In conclusion, the implemented

algorithm seems to perform well, as confirmed by the simulation results.

Tab. 1: Simulation study for 50 units
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Par. true mean MSE C.I. 95%

α1 0.5 0.4313 0.0139 (0.2591 ; 0.6268)

α2 -1 -0.8994 0.0313 (-1.2065 ; -0.6420)

β01 1 1.0531 0.0476 (0.6277 ; 1.4768)

β11 1 0.8435 0.0745 (0.4385 ; 1.3024)

β21 1 0.9779 0.0253 (0.6614 ; 1.2628)

β31 1 0.9587 0.0780 (0.4526 ; 1.5069)

β02 1 0.8978 0.0542 (0.4931 ; 1.3254)

β12 1 1.3690 0.1786 (0.9487 ; 1.7831)

β22 1 1.0308 0.0240 (0.7484 ; 1.3343)

β32 1 1.0114 0.0710 (0.4679 ; 1.5064)

γ1 1 0.9080 0.0586 (0.4812 ; 1.3690)

γ2 1 0.8646 0.1285 (0.2547 ; 1.5778)

Table 3: Simulation study for 200 units

Par. true mean MSE C.I. 95%

α1 0.5 0.4353 0.0087 (0.3201 ; 0.5739)

α2 -1 -0.9027 0.0203 (-1.1149 ; -0.7093)

β01 1 1.0482 0.0238 (0.7494 ; 1.3200)

β11 1 0.8535 0.0591 (0.5043 ; 1.2907)

β21 1 0.9780 0.0109 (0.7723 ; 1.1750)

β31 1 0.9701 0.0418 (0.5806 ; 1.3870)

β02 1 0.9080 0.0354 (0.6008 ; 1.2426)

β12 1 1.3456 0.1514 (0.9878 ; 1.7002)

β22 1 1.0286 0.0109 (0.8333 ; 1.2377)

β32 1 0.9933 0.0425 (0.6187 ; 1.3949)

γ1 1 0.9081 0.0295 (0.6046 ; 1.1745)

γ2 1 0.8665 0.0666 (0.4326 ; 1.3284)

4. APPLICATION TO PRIMARY BILIARY CIRRHOSIS DATA

In this section, the proposed model is applied to the well-known PBC data

set.

The Mayo Clinic has established a database of 424 patients suffering from PBC

(Dickson et al., 1989; Fleming and Harrington, 1991; Murtaugh et al., 1994; Th-

erneau and Grambsch, 2000). These 424 units represent all PBC patients referred

Tab. 2: Simulation study for 100 units

Tab. 3: Simulation study for 200 units
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to Mayo between January 1974 and May 1984 who met the standard eligibility

criteria for a randomized, double-blinded, placebo-controlled clinical trial of the

drug D-penicillamine (DPCA). Each patient and his/her treating physician agreed

to randomization in 312 of the 424 cases. For each of the 312 clinical trial pa-

tients, data on clinical, biochemical, sérologie, and histologie parameters were

collected. For this analysis, a complete follow up until July 1986 was attempted

on all patients. By the end of the trial, 125 of the 312 had died. PBC is a fatal

chronic liver disease of unknown cause. The primary pathologic event appears to

be destruction of interlobular bile ducts, which may be mediated by immunologi-

cal mechanisms.

The PBCSEQ data set is available from the package survival (Therneau and Lum-

ley, 2015) in R, which contains multiple laboratory results collected for each pa-

tient during each follow-up visit, with different baseline and longitudinal covari-

ates. Two longitudinal covariates are considered: the level of serum bilirubin in

mg/dl (serBilir) and the level of albumin in mg/dl (albumin). The observation

time is expressed in days. In the survival sub-model, we analyse the exogenous

covariate patient’s age at registration, given in years (age).

Accordingly, the longitudinal and the survival sub-models are as follows:


yi1(t) = β01 +β11t +bi01 +bi11t + εi1(t)

yi2(t) = β02 +β12t +bi02 +bi12t + εi2(t)

hi(t) = h0(t)exp[α1mi1(t)+α2mi2(t)+ γ1age]

, (13)

where yi1(t) is log(serBilir) , the logarithm of the level of serum bilirubin, and

yi2(t) is albumin, the level of albumin.

The results obtained using the proposed algorithm are shown in Table 4,

where all parameter results are statistically significant. In particular, log(serBilir)
has a positive effect on the risk of death, with a one-point increase in log(serBilir)
associated with a 3.0038 (= exp(1.0999))-fold increase in the risk of death. Then,

albumin has a negative effect on the risk of death, with a one-point increase in al-
bumin resulting in a 0.1582 (= exp(−1.8434))-fold decrease in the risk of death.

Moreover, the exogenous variable age has a positive effect on the risk of death,

with a one-point increase in age resulting in a 1.0481 (= exp(0.0472))-fold in-

crease in the risk of death.

Analysing the estimates for the longitudinal sub-model, the slope indicates the

change in the longitudinal covariates from an increase of one day. Accordingly,

the observation time has a positive effect of (β11 = 0.0005) on the level of log(serBilir),
but has a negative effect of (β12 =−0.0003) on the level of albumin.
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Parameter Est. SE p-value

α1 (log(serBilir)) 1.0999 0.1036 < 0.0001

α2 (albumin) -1.8434 0.1695 < 0.0001

γ1 (age) 0.0472 0.0084 < 0.0001

β01 (Intercept) 0.6004 0.0262 < 0.0001

β11 (Time) 0.0005 1.3543∗10−05 < 0.0001

β02 (Intercept) 3.5488 0.0204 < 0.0001

β12 (Time) -0.0003 1.2989∗10−05 < 0.0001

Log-lik -2934.6710

Table 5: PBC Results using joineRML

Parameter Est. SE p-value

α1 (log(serBilir)) 1.0402 0.1221 < 0.0001

α2 (albumin ) -2.3425 0.3247 < 0.0001

γ1 (age) 0.0478 0.0086 < 0.0001

β01 (Intercept) 0.4848 0.0496 < 0.0001

β11 (Time) 0.0005 0.0000 < 0.0001

β02 (Intercept) 3.5512 0.0223 < 0.0001

β12 (Time) -0.0003 0.0000 < 0.0001

Log-lik -3076.646

For comparative purposes, Table 5 reports the results of the parameter estima-

tions for model (13) using the package joineRML (Hickey et al., 2017). The

estimates based on the proposed algorithm are coherent with those obtained using

joineRML.

5. DISCUSSION

The proposed algorithm that extends the maximum-likelihood estimation method

to the case of a multivariate longitudinal sub-model shows encouraging results,

which are confirmed by the simulation studies. In fact, the mean value of the es-

timates is close to the true value. Increasing the number of units in the data set

yields better results, but also increases the computation time.

As already argued, the model here proposed is different from the models used in

Rizopoulos (2010) and Hickey et al. (2017). Indeed, this work uses a multivariate

formulation of the Rizopoulos (2010) model and analyses the relation between the

5. DISCUSSION

The proposed algorithm that extends the maximum-likelihood estimation
method to the case of a multivariate longitudinal sub-model shows encouraging
results, which are confirmed by the simulation studies. In fact, the mean value of
the estimates is close to the true value. Increasing the number of units in the data
set yields better results, but also increases the computation time.

Tab. 4: PBC Resuts

Tab. 5: PBC Resuts using joineRML
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hazard of the event and the true and unobserved value of the longitudinal covari-

ates, not only the relation between hazard and random effects, as in Hickey et al.

(2017). In addition, in the estimation method, for the EM algorithm, a Gauss–

Hermite quadrature rule is used.

The results of applying the method to PBC data quantify the influence of the two

longitudinal covariates on the event. Here, we find that log(serBilir) has a positive

effect on the risk of death, whereas albumin has a negative effect on the risk of

death. The results are coherent with those obtained from the other package join-

eRML (Hickey et al., 2017).

The results are encouraging and lead to several possibilities for future work. For

instance, it will be worthwhile developing diagnostic analyses and dynamic pre-

dictions. Moreover, we would like to extend the survival sub-model by studying

the joint effect of more than one longitudinal covariate on more than one terminal

event.
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APPENDIX

The score function is defined as:

S(θ) =
n

∑
i=1

Si(θ) =
n

∑
i=1

∂
∂θ

log p(Ti,δi,yi;θ)

= ∑
i

1

p(Ti,δi,yi;θ)
∂

∂θ ′

∫
p(Ti,δi|bi;θt)p(yi|bi;θy)p(bi;θb)dbi

= ∑
i

1

p(Ti,δi,yi;θ)

∫ ∂
∂θ ′ [p(Ti,δi|bi;θt)p(yi|bi;θy)p(bi;θb)]dbi

= ∑
i

∫ { ∂
∂θ ′ log [p(Ti,δi|bi;θt)p(yi|bi;θy)p(bi;θb)]

}
p(Ti,δi|bi;θt)p(yi|bi;θy)p(bi;θb)

p(Ti,δi,yi;θ)
dbi =

= ∑
i

∫
A(θ ,bi)p(bi|Ti,δi,yi;θ)dbi
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