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Abstract A care pathway is defined as a complex intervention for the organisation of care
processes for a specific group of patients during a specific period. Although the analysis
of care pathways has been shown its benefits in clinical practices, little attention has
been devoted to study how it can contribute to the optimization of the use of resources.
In particular here we focus on the analysis of the history of a large number of patients’
admissions, i.e. of data that belong to the routine flow of information that all hospital
provide to the Local Healthcare Agency. One goal is the identification of the most likely
sequence of wards/clinics for a patient; in fact, knowing which wards/clinics are more
interrelated can be useful for a better hospital organization. Moreover we suggest the use
of Bayesian Networks to predict the care pathway that each patient will undertake, given
his/her history.
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1. INTRODUCTION

Health Operations Management can be described as the analysis, design, plan-
ning and control of all the steps that are required to provide a service to a patient
(Vissers and Beech, 2005). In particular, Vissers and Beech distinguish between
five levels of Health Operations Management: (i) a care plan for each patient
(planning and protocol at the level of a patient), (ii) the planning of care in care
pathways (planning and control for a group of patients), (iii) the planning of the
capacity of professionals, equipment and space (planning and control at the level
of the resource), (iv) the planning of the number of patients to be treated and care
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activities to be implemented (planning and control at the level of the patient vol-
ume), (v) the long-term policy of the institution (strategic planning). As noticed
in Schrijvers et al. (2012), these levels are strongly connected, and are influenced
by the introduction of care pathways in health services.

Recall that a care pathway is defined as a complex intervention for the mutual
decision-making and organisation of care processes for a well-defined group of
patients during a well-defined period (Vanhaecht et al., 2007). As pointed out
for instance in Aringhieri and Duma (2015), a care pathway can be seen as an
algorithm based on a flow chart that specifies all the decisions, the treatments, the
events related to a patient with a specific pathology. Notice that a care pathway
can be analysed at a single level of care (e.g. a hospital) or globally, considering
every possible level of health care (from education and prevention to diagnosis,
treatment and recovery). And although it has been shown its benefits in clinical
practices, little attention has been devoted to study how it can contribute to the
optimization of the use of resources (Aringhieri and Duma, 2015).

In fact, the analysis of care pathways is a powerful bottom-up tool that allows
to identify the patient’s profiles starting from their socio-demographic features
and their pathologies. The most common procedure in this sense is the systematic
analysis of the literature in order to determine the diagnostic and clinical best
practices, that can be used to build decision trees and top-down guidelines for the
clinicians (Twaddle and Qureshi, 2005). An alternative to this approach is that of
building the patient clinical pathways starting from the analysis of the history of a
large number of patients and of admissions. This procedure has the advantage of
taking into account real flows of patients, that can be compared with the clinical
best practices described in the literature (Lodewijckx et al., 2012). It is interesting
to notice that another possible use of this procedure is that of studying the typical
activity of a hospital. This allows to determine the best programming strategies
in terms of (i) understanding the evolution of cases in short-term treatment, (ii)
checking the residual production capacity of the facility, (iii) estimating the Life
Time Values of patients that need to enter the system in order to establish the
medium-term sustainability of the facility.

Here we take this second approach, and concentrate on pathways within a
clinic (that do not include outpatient department’s activities, discharge from the
hospital and after-care). In particular, although our approach can be clearly gen-
eralised for taking into account all the events that constitute the path that a patient
suffering from a disease walks in the National Health System, we focus on pa-
tients’ admissions. And in order to build clinical pathways from real flows of
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patients and admissions, we explore the use of Bayesian networks. These are
presented in details in Section 2. Section 3 shows the Bayesian networks and
the typical patient profiles estimated using the admissions of 19300 patients of
Campus Bio-Medico, a University Hospital in southern Rome (Italy), between
1998 and 2014. The analysis of the admissions is conducted both by ward and
by clinic, and in both cases we show how the use of Bayesian networks allows
to insert and propagate evidence in the form of the history of a patient up to a
certain stage. Section 4 considers the problem of testing the predictive ability of
the Bayesian network by applying fivefold cross-validation. A few concluding
remarks are presented in the final section.

2. BAYESIAN NETWORKS

Bayesian networks (Cowell et al. (1999); Lauritzen (1996); Pearl (1988)) belong
to the wider class of Probabilistic Graphical Models that efficiently encode the
joint probability distribution for a large set of variables. In particular, a Bayesian
Network (BN) represents a multivariate probability distribution over a set of ran-
dom variables X = {Xj,...,X;} by means of i) a network structure D express-
ing the conditional independence statements about the variables, and ii) a set P
of local probability distributions associated with each variable, and it can han-
dle complex probabilistic models by decomposing them into smaller components.
Moreover, the availability of easy and computationally efficient algorithms for ev-
idence propagation makes BNs a very useful statistical tool to carry out what-if
analyses. For all these reasons, BNs have been widely applied in several different
fields, addressing tasks such as diagnosis, prediction, decision making, classifica-
tion and data mining.

More specifically, the network structure D of a BN is a directed acyclic graph
(DAG) that is defined by a set V of nodes (or vertices), each of which represents
a random variable in X, and a set E of directed links (or edges) between pairs of
nodes, each of which represents a directed relation of one variable to the other,
arranged without producing cycles. Notice that if an arrow points from X; to X,
then X; is named a parent of X; (pa(X j)) and X; is named a child of X;. Moreover,
the set P of local probability distributions is linked to D = (V;E) through the
Markov condition whereby each variable is conditionally independent of its non-
descendants given its parents, so that the joint distribution of X can be factorised

as:
k

p(Xi1,....X) = [[ p(Xjlpa(X;)) (1)
j=1
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with an evident computational gain.

Notice that once the structure of the network and the probabilities in Equation
1 have been estimated, the BN becomes a very useful tool to perform probabilis-
tic inference. In particular, Jensen et al. (1990) and Lauritzen and Spiegelhal-
ter (1988) have developed efficient algorithms that allow to update the marginal
probability distributions of some variables when information on other variables is
inserted in the network.

2.1. STRUCTURAL LEARNING

Bayesian networks’ structure and parameters (i.e. the probabilities in (1)) can be
elicited from a domain expert knowledge, which is often a difficult procedure,
or retrivied from the data. It is also possible to induce a network structure and
its conditional probabilities on the basis of both data and some domain expert
background knowledge; this can speed up the learning process severalfold and
improve the accuracy of the elicitation.

More specifically, two different methods can be used for learning the struc-
ture of Bayesian networks from the data: constraint-based algorithms and search
and score-based algorithms (see Cooper and Herskovits (1992) and Neapolitan
(2004)).

The score-based method is an optimization-based search approach, based on
a scoring function and a search procedure; it explores the space of all possible
candidate networks assigning a score to each one, reflecting its goodness of fit,
and selecting that with the highest score. This, however, is often infeasible in
practice because the number of possible DAGs grows super-exponentially with
the number of nodes. To overcome this limitation, a greedy search strategy such
as the hill climbing can be applied: starting from a network structure (usually the
empty one), in each step the algorithm selects as the new candidate the neigh-
bouring structure of the current network with the highest score. More specifically,
it iteratively performs small changes to the current structure (adding, deleting or
reversing one edge at a time), and it stops when the score can no longer be im-
proved. Obviously, the main problem of this approach is the possibility to find a
local maxima rather than a global one.

Instead, constraint-based algorithms test the occurrence of a relation between
pairs of variables by means of appropriate hypothesis tests of independence, and
then build a graph which satisfies the corresponding independence statements.
The most known algorithm beloging to this group, that we are applying in the
present work, is the PC algorithm due to Spirtes et al. (2000). The version im-
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plemented by the software Hugin performs the following steps: i) for all pairs of
nodes, a statistical test verifies the assumption of conditional independence (un-
less a structural constraint has been forced by the researcher); ii) starting from
an empty graph, it creates an undirected graph called the skelefon, that includes
undirected edges between pairs of nodes for which no conditional independence
relations were found; iii) the orientation step starts by looking for sets of three
variables X;, X;, X; such that X; and X; are independent, but dependent condition-
ally on Xj, that can be uniquely represented by the v-structure X; — X; <— X;
iv) the rest of the edges are then oriented so as to avoiding cycles and new v-
structures. Notice that the PC algorithm works under the assumption that the
distribution of the observed variables is faithful to a DAG (i.e. that data have been
simulated from a probability distribution that factorizes according to a DAG), un-
der the assumption of infinite data sets and no hidden variables.

3. AREAL CASE STUDY

We have considered inpatient admissions in different wards of Campus Bio-Medico
between 1998 and 2014 of patients with at least two admissions and no more than
seven, and we have estimated a BN with seven nodes, each of which represents the
ward of the corresponding admission. The wards included in our analysis are: 1)
Surgery, 2) Cardio-Neuro-Vascular, 3) Onco-hematology, 4) Internal Medicine, 5)
Diagnostics. Furthermore, we have considered the history of a patient concluded
after 18 months of the last admission, so that any further admission of the same
person counts as that of a new patient, and we have excluded from the analysis
patients whose history is not concluded (i.e. patients whose last admission is less
that 18 months old), for a total of 19300 patients.

3.1. THE ANALYSIS OF ADMISSIONS BY WARDS

The estimated BN structure for the 19300 patients in the different wards is shown
in Figure 1, and looks quite reasonable: the first inpatient admission directly in-
fluences the second, the third, the fourth and the fifth ones; the second inpatient
admission directly influences the third and the fourth ones; the third inpatient ad-
mission directly influences the fourth and fifth ones; from the fourth inpatient
admission, each admission directly influences only the following one. Notice that
the BN of Figure 1 was obtained by implementing the PC algorithm with a tem-
poral ordering constraint for nodes.

Note that once the BN of Figure 1 has been estimated, it can be employed
in different ways. First, by means of the chain rule decomposition in (1), it can
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be used to compute the joint probabilities of the different patient profiles, which
provide useful informations for a better hospital organization from the point of
view of which wards are more interrelated; Table 1 shows these probabilities for
the most likely patient profiles. Second, it can be used to propagate evidence (in
our case the history of a patient up to a certain stage) through the graph, and to
investigate how such evidence changes the marginal distributions of the remaining
nodes.

Assume, for instance, that the first admission of a patient was in the Surgery
ward. The BN in Figure 2 shows that this evidence modifies the marginal prob-
abilities of the different wards as far as the second admission is concerned: with
respect to Figure 1, the probabilities that the second admission is in Cardio-Neuro-
Vascular, in Onco-hematology, in Medicine decrease, while the probability that
the second admission is again in Surgery increases from 0.48 (in Figure 1) to
0.86 (in Figure 2). Obviously also the probabilities for the following admissions
change. For instance, by comparing Figure 1 with Figure 2 we see that the prob-
ability that the third admission is in Surgery increases, even if the most likely
category for the third admission is none, and the same happens for the fourth
admission.

If we then insert a second evidence in the second node of the network, for in-
stance an admission in Onco-hematology (Figure 3), the situation changes again.
With respect to Figure 2, the probability that there is not a third admission de-
creases from 0.62 (in Figure 2) to 0.43 (in Figure 3), the probability that the
third admission is in Surgery decreases from 0.29 (in Figure 2) to 0.16 (in Fig-
ure 3), while it increases significantly the probability that the third admission is
in Onco-hematology, from 0.04 (in Figure 2) to 0.36 (in Figure 3). Similarly, the
probability that there is not a fourth admission decreases from 0.82 (in Figure 2)
to 0.69 (in Figure 3), the probability that the fourth admission is in Surgery de-
creases from 0.13 (in Figure 2) to 0.08 (in Figure 3), while the probability that the
fourth admission is in Onco-hematology increases from 0.02 (in Figure 2) to 0.20
(in Figure 3).

If we then insert a third evidence in the third node of the network, for instance
an admission in Surgery (Figure 4), the situation changes again. With respect to
Figure 3, the probability that there is not a fourth admission decreases from 0.69
(in Figure 3) to 0.59 (in Figure 4), the probability that the fourth admission is in
Onco-hematology decreases from 0.20 (in Figure 3) to 0.10 (in Figure 4), while
it increases significantly the probability that the fourth admission is in Surgery,
that is now the ward with the highest probability, from 0.08 (in Figure 3) to 0.28
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(in Figure 4). And something similar happens for the following admissions: it is
unlikely that there will be a fifth, sixth or a seventh admission, but if there is one,
then it is probably in Surgery.

3.2. THE ANALYSIS OF ADMISSIONS BY CLINICS

Notice that a similar analysis of that presented in the previous section can be
performed also with respect to the inpatient admissions in the different clinics of
Campus Biomedico, which are shown in Table 2 and whose number is rather large
compared of that of wards. In this case the analysis with the BN is made quite dif-
ficult by the large number of possible clinics at each node of the network, i.e. by
the enormous number of possible patient profiles, most of which are in fact very
unlikely. For this reason, here we are going to limit the number of possible patient
profiles by considering two different scenarios. In the first one we consider inpa-
tient admission in different clinics of Campus Biomedico of patients whose first
two admissions were in the Surgery ward, for a total of 7878 patients; from Table
1 we can see that there are at least seven patient profiles with this feature which
receive a high probability. In the second scenario we consider inpatient admission
in different clinics of Campus Biomedico of patients whose first admission was in
the Cardio-Neuro-Vascular ward, for a total of 4788 patients; again, from Table 1
we can see that this corresponds to different high probability profiles.

Consider initially the first scenario. Figure 5 shows the estimated BN structure
for the patients whose first two admissions were in the Surgery ward with respect
to their admissions in the different clinics: we can see that in this case each ad-
mission directly influences only the following one, so that for instance given the
second admission, the clinic of the third admission is independent of that of the
first admission. As in the previous section, this BN can be used to compute the
joint probabilities of the different patient profiles by means of the chain rule de-
composition in (1), which are shown in Table 3. Moreover, one could insert and
propagate different evidence in the BN, that would change the marginal distribu-
tions of the various nodes.

Consider now the second scenario. Figure 6 shows the estimated BN structure for
the patients whose first admission was in the Cardio-Neuro-Vascular ward with re-
spect to their admissions in the different clinics; also in this case each admission
directly influences only the following one, and this BN can be used to compute
the joint probabilities of the different patient profiles, which are shown in Table 4.
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Tab. 1: The patient ward profileswith highest probabilities

IProbability

I admission

IT admission

III admission

IV admission

V admission

VI admission

VII admission

0.260
0.149
0.068
0.067
0.037
0.024
0.021
0.020
0.019
0.013
0.012
0.011
0.011
0.011
0.011
0.009
0.009
0.009
0.008
0.007
0.007
0.007
0.006
0.006
0.005
0.005
0.005
0.004

Surgery
Cardio-Neuro-Vascular
Surgery

Medicine
Cardio-Neuro-Vascular
Surgery
Onco-hematology
Medicine

Medicine

Surgery

Surgery

Surgery
Onco-hematology
Diagnostics
Cardio-Neuro-Vascular
Cardio-Neuro-Vascular
Medicine

Medicine
Cardio-Neuro-Vascular
Diagnostics

Surgery

Surgery
Onco-hematology
Surgery
Onco-hematology
Medicine
Onco-hematology
Surgery

Surgery
Cardio-Neuro-Vascular
Surgery

Medicine
Cardio-Neuro-Vascular
Surgery
Onco-hematology
Medicine

Surgery

Surgery
Onco-hematology
Medicine
Onco-hematology
Diagnostics

Surgery
Cardio-Neuro-Vascular
Cardio-Neuro-Vascular
Medicine

Medicine

Surgery

Surgery
Cardio-Neuro-Vascular
Onco-hematology
Surgery
Onco-hematology
Medicine

Surgery

Surgery

Surgery

Cardio-Neuro-Vascular
Surgery

Medicine

Surgery

Onco-hematology

Cardio-Neuro-Vascular

Medicine

Surgery

Onco-hematology
Surgery
Onco-hematology
Medicine

Onco-hematology

Surgery

Surgery

Cardio-Neuro-Vascular

Medicine

Surgery

Onco-hematology
Surgery
Onco-hematology
Medicine

Surgery

Surgery

Surgery
Onco-hematology
Medicine

Surgery

Surgery

Surgery

est

"AS[CUA "1 mied O uelbuod



Tab. 2: Clinics corresponding to the different wards

Cardio-Neuro-Vascular Surgery Medicine Onco-hematology | Diagnostics
Cardiac surgery Short stay surgery Endocrinology Hematology Endoscopy
Cardiology General surgery Hepatology Oncology Interventional radiology
Neurology Geriatric surgery Gastroenterology
Cardiac intensive care unit (CICU) | Reconstructive surgery | Geriatrics

Thoracic surgery Internal medicine

Gynecology Nephrology

Onco-gynecology

Oculistics

Orthopedics

Otorinolaringoiatry

Rehabilitation

Breast surgery

Urology
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Tab. 4: The patient clinic profileswith highest probabilities (conditional on thefirst admissionsbeingin Cardio-Neuro-Vascular)

Probability

I admission

IT admission

III admission

IV admission

V admission

VI admission

VII admission

0.433
0.107
0.096
0.029
0.024
0.023
0.015
0.012
0.012
0.010
0.010
0.008
0.008
0.006
0.005
0.005
0.004
0.004
0.004
0.004
0.003
0.003
0.003
0.003
0.003
0.003
0.003

Cardiology
Cardiology
Cardiology
Cardiac surgery
Neurology
Cardiology
Cardiology
Cardiology
Cardiology
Cardiac surgery
Cardiology
Cardiology
Cardiology
Neurology
Cardiology
Neurology
Neurology
Cardiology
Cardiology
Cardiac surgery
Cardiology
Cardiac surgery
Cardiology
Cardiology
Cardiology
Cardiology
Neurology

Cardiology
Cardiology
Cardiac surgery
Cardiac surgery
Neurology
Cardiology
Internal medicine
Cardiac surgery
Cardiology
Cardiology
Cardiology
General surgery
Urology
Cardiology
Orthopedics
Neurology
Geriatrics
Geriatrics
Cardiology
Cardiac surgery
Cardiology
Internal medicine
Cardiac surgery
Internal medicine
Cardiology
Otorinolaringoiatry
Internal medicine

None
Cardiology
None

None

None
Cardiology
None

Cardiac surgery
Cardiac surgery
None
Cardiology
None

None

None

None
Neurology
None

None
Cardiology
Cardiac surgery
Cardiology
None
Cardiology
Internal medicine
Internal medicine
None

None

None
None
None
None

None
Cardiology
None
None
None
None
Cardiology
None
None
None
None
None
None
None
Cardiac surgery
None
Cardiology
None
None
None
None
None
None

None
None
None
None
None
None
None
None
None
None
Cardiology
None
None
None
None
None
None
None
None
None
Cardiology
None
None
None
None
None
None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Cardiology
None
None
None
None
None
None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
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4. PREDICTION

We now consider the problem of testing the predictive ability of the BN. It is
important to stress that, given the history of a patient, the task of predicting if
there is going to be a new admission (within 18 months from the last one) is
indeed rather difficult. However, if we condition on the fact that there will be a
new admission, it is interesting to check the performance of the Bayesian network
in predicting the ward (or the clinic) that this will involve. For simplicity this is
be done here by considering patients with exactly five admissions, for a total of
951 patients, and with reference to wards.

Notice that the fundamental idea of predictive validation is to split the data
into two subsets, the training data, that are used to build a model (a BN in our
case), and the validation data, that are used to test the performance of the model
for prediction. With respect to resubstitution validation, this approach has the
advantage of avoiding over-fitting, but the results can be highly dependent on the
choice for the training/validation split. One popular way to deal with this is to
consider cross-validation: in k-fold cross-validation the data is first partitioned
into k equally sized folds; subsequently k iterations of training and validation are
performed, in such a way that within each iteration a different fold of the data
is held-out for validation while the remaining k-1 folds are used for learning.
Notice that this procedure allows for overlapping training sets, while keeping the
validation sets independent, and that the performance of the model on each fold
can be tracked using some performance measure; upon completion, k samples of
the performance measure will be available, and different methodologies such as
averaging can be used to obtain an aggregate measure.

Table 5 shows the results of fivefold cross-validation for predicting the wards
of the fifth admission of patients, given their first four admissions; the proportion
of correct predictions reaches nearly the 82%.

5. CONCLUSIONS AND FUTURE STEPS

The aim of care pathways is to improve the quality of health care from the point of
view of the patient outcomes, safety and satisfaction, and from the point of view
of optimizing the use of resources. One of the key ingredients is the integration of
evidence-based knowledge (Lodewijckx et al., 2012). Care pathways have been
suggested as a way to translate national guidelines into local protocols, and from
a clinical point of view there is enough evidence in their favour to justify further
evaluation of their impact (Campbell et al., 1998). However little attention has
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Tab. 5: Results of fivefold cross-validation for predicting the war ds of the fifth admission

Predicted
Observed CNV S M OH D
Cardio-Neuro-Vascular (CNV) | 105 12 8 6 0
Surgery (S) 13 309 26 17 6
Medicine (M) 14 18 161 8 3
Onco-hematology (OH) 3 18 3 180 3
Diagnostics (D) 4 9 3 0 22

been devoted to studying how care pathways can contribute to the management of
a facility critical resources, such as beds and operating rooms.

The analysis presented in this paper shows how the use of Bayesian networks
allows to obtain important informations about a patient profile that can easily
converge into a care pathway. In particular, we have only been looking at the
patients admissions, i.e. at their administrative history, without introducing purely
clinical variables. One of the main advantages of this approach is that it uses only
data belonging to the routine flow of information that all hospitals provide to the
Local Healthcare Agency and to the Ministry of Health.

Notice that the fact that we have not included in the analysis any clinical vari-
able implies that the quality of the estimates depends significantly on the number
of events that make up the history of the patient. In this sense it is clearly in-
teresting to explore to what extent the estimates of patient clinical paths can be
improved by including in the model further informations both about each admis-
sion (i.e. diagnosis, duration of the hospitalization, time elapsed since previous
admission, medical treatments provided) and about each patient (i.e. age, sex,
potential chronic deseases). The possibility to use these informations in order to
reliably predict both the probability of a future admission and its time frame will
be the object of future research.
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