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Abstract A care pathway is defined as a complex intervention for the organisation of care
processes for a specific group of patients during a specific period. Although the analysis
of care pathways has been shown its benefits in clinical practices, little attention has
been devoted to study how it can contribute to the optimization of the use of resources.
In particular here we focus on the analysis of the history of a large number of patients’
admissions, i.e. of data that belong to the routine flow of information that all hospital
provide to the Local Healthcare Agency. One goal is the identification of the most likely
sequence of wards/clinics for a patient; in fact, knowing which wards/clinics are more
interrelated can be useful for a better hospital organization. Moreover we suggest the use
of Bayesian Networks to predict the care pathway that each patient will undertake, given
his/her history.
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1. INTRODUCTION

Health Operations Management can be described as the analysis, design, plan-

ning and control of all the steps that are required to provide a service to a patient

(Vissers and Beech, 2005). In particular, Vissers and Beech distinguish between

five levels of Health Operations Management: (i) a care plan for each patient

(planning and protocol at the level of a patient), (ii) the planning of care in care

pathways (planning and control for a group of patients), (iii) the planning of the

capacity of professionals, equipment and space (planning and control at the level

of the resource), (iv) the planning of the number of patients to be treated and care
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activities to be implemented (planning and control at the level of the patient vol-

ume), (v) the long-term policy of the institution (strategic planning). As noticed

in Schrijvers et al. (2012), these levels are strongly connected, and are influenced

by the introduction of care pathways in health services.

Recall that a care pathway is defined as a complex intervention for the mutual
decision-making and organisation of care processes for a well-defined group of
patients during a well-defined period (Vanhaecht et al., 2007). As pointed out

for instance in Aringhieri and Duma (2015), a care pathway can be seen as an

algorithm based on a flow chart that specifies all the decisions, the treatments, the

events related to a patient with a specific pathology. Notice that a care pathway

can be analysed at a single level of care (e.g. a hospital) or globally, considering

every possible level of health care (from education and prevention to diagnosis,

treatment and recovery). And although it has been shown its benefits in clinical

practices, little attention has been devoted to study how it can contribute to the

optimization of the use of resources (Aringhieri and Duma, 2015).

In fact, the analysis of care pathways is a powerful bottom-up tool that allows

to identify the patient’s profiles starting from their socio-demographic features

and their pathologies. The most common procedure in this sense is the systematic

analysis of the literature in order to determine the diagnostic and clinical best

practices, that can be used to build decision trees and top-down guidelines for the

clinicians (Twaddle and Qureshi, 2005). An alternative to this approach is that of

building the patient clinical pathways starting from the analysis of the history of a

large number of patients and of admissions. This procedure has the advantage of

taking into account real flows of patients, that can be compared with the clinical

best practices described in the literature (Lodewijckx et al., 2012). It is interesting

to notice that another possible use of this procedure is that of studying the typical

activity of a hospital. This allows to determine the best programming strategies

in terms of (i) understanding the evolution of cases in short-term treatment, (ii)
checking the residual production capacity of the facility, (iii) estimating the Life

Time Values of patients that need to enter the system in order to establish the

medium-term sustainability of the facility.

Here we take this second approach, and concentrate on pathways within a

clinic (that do not include outpatient department’s activities, discharge from the

hospital and after-care). In particular, although our approach can be clearly gen-

eralised for taking into account all the events that constitute the path that a patient

suffering from a disease walks in the National Health System, we focus on pa-

tients’ admissions. And in order to build clinical pathways from real flows of
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patients and admissions, we explore the use of Bayesian networks. These are

presented in details in Section 2. Section 3 shows the Bayesian networks and

the typical patient profiles estimated using the admissions of 19300 patients of

Campus Bio-Medico, a University Hospital in southern Rome (Italy), between

1998 and 2014. The analysis of the admissions is conducted both by ward and

by clinic, and in both cases we show how the use of Bayesian networks allows

to insert and propagate evidence in the form of the history of a patient up to a

certain stage. Section 4 considers the problem of testing the predictive ability of

the Bayesian network by applying fivefold cross-validation. A few concluding

remarks are presented in the final section.

2. BAYESIAN NETWORKS

Bayesian networks (Cowell et al. (1999); Lauritzen (1996); Pearl (1988)) belong

to the wider class of Probabilistic Graphical Models that efficiently encode the

joint probability distribution for a large set of variables. In particular, a Bayesian

Network (BN) represents a multivariate probability distribution over a set of ran-

dom variables X = {X1, . . . ,Xk} by means of i) a network structure D express-

ing the conditional independence statements about the variables, and ii) a set P
of local probability distributions associated with each variable, and it can han-

dle complex probabilistic models by decomposing them into smaller components.

Moreover, the availability of easy and computationally efficient algorithms for ev-

idence propagation makes BNs a very useful statistical tool to carry out what-if

analyses. For all these reasons, BNs have been widely applied in several different

fields, addressing tasks such as diagnosis, prediction, decision making, classifica-

tion and data mining.

More specifically, the network structure D of a BN is a directed acyclic graph

(DAG) that is defined by a set V of nodes (or vertices), each of which represents

a random variable in X, and a set E of directed links (or edges) between pairs of

nodes, each of which represents a directed relation of one variable to the other,

arranged without producing cycles. Notice that if an arrow points from Xi to Xj,

then Xi is named a parent of Xj (pa(X j)) and Xj is named a child of Xi. Moreover,

the set P of local probability distributions is linked to D = (V ;E) through the

Markov condition whereby each variable is conditionally independent of its non-

descendants given its parents, so that the joint distribution of X can be factorised

as:

p(X1, . . . ,Xk) =
k

∏
j=1

p(Xj|pa(Xj)) (1)



144 Conigliani C., Petitti T., Vitale V.

with an evident computational gain.

Notice that once the structure of the network and the probabilities in Equation

1 have been estimated, the BN becomes a very useful tool to perform probabilis-

tic inference. In particular, Jensen et al. (1990) and Lauritzen and Spiegelhal-

ter (1988) have developed efficient algorithms that allow to update the marginal

probability distributions of some variables when information on other variables is

inserted in the network.

2.1. STRUCTURAL LEARNING

Bayesian networks’ structure and parameters (i.e. the probabilities in (1)) can be

elicited from a domain expert knowledge, which is often a difficult procedure,

or retrivied from the data. It is also possible to induce a network structure and

its conditional probabilities on the basis of both data and some domain expert

background knowledge; this can speed up the learning process severalfold and

improve the accuracy of the elicitation.

More specifically, two different methods can be used for learning the struc-

ture of Bayesian networks from the data: constraint-based algorithms and search
and score-based algorithms (see Cooper and Herskovits (1992) and Neapolitan

(2004)).

The score-based method is an optimization-based search approach, based on

a scoring function and a search procedure; it explores the space of all possible

candidate networks assigning a score to each one, reflecting its goodness of fit,

and selecting that with the highest score. This, however, is often infeasible in

practice because the number of possible DAGs grows super-exponentially with

the number of nodes. To overcome this limitation, a greedy search strategy such

as the hill climbing can be applied: starting from a network structure (usually the

empty one), in each step the algorithm selects as the new candidate the neigh-

bouring structure of the current network with the highest score. More specifically,

it iteratively performs small changes to the current structure (adding, deleting or

reversing one edge at a time), and it stops when the score can no longer be im-

proved. Obviously, the main problem of this approach is the possibility to find a

local maxima rather than a global one.

Instead, constraint-based algorithms test the occurrence of a relation between

pairs of variables by means of appropriate hypothesis tests of independence, and

then build a graph which satisfies the corresponding independence statements.

The most known algorithm beloging to this group, that we are applying in the

present work, is the PC algorithm due to Spirtes et al. (2000). The version im-
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plemented by the software Hugin performs the following steps: i) for all pairs of

nodes, a statistical test verifies the assumption of conditional independence (un-

less a structural constraint has been forced by the researcher); ii) starting from

an empty graph, it creates an undirected graph called the skeleton, that includes

undirected edges between pairs of nodes for which no conditional independence

relations were found; iii) the orientation step starts by looking for sets of three

variables Xi,Xj,Xl such that Xi and Xl are independent, but dependent condition-

ally on Xj, that can be uniquely represented by the v-structure Xi −→ Xj ←− Xl;

iv) the rest of the edges are then oriented so as to avoiding cycles and new v-

structures. Notice that the PC algorithm works under the assumption that the

distribution of the observed variables is faithful to a DAG (i.e. that data have been

simulated from a probability distribution that factorizes according to a DAG), un-

der the assumption of infinite data sets and no hidden variables.

3. A REAL CASE STUDY

We have considered inpatient admissions in different wards of Campus Bio-Medico

between 1998 and 2014 of patients with at least two admissions and no more than

seven, and we have estimated a BN with seven nodes, each of which represents the

ward of the corresponding admission. The wards included in our analysis are: 1)

Surgery, 2) Cardio-Neuro-Vascular, 3) Onco-hematology, 4) Internal Medicine, 5)

Diagnostics. Furthermore, we have considered the history of a patient concluded

after 18 months of the last admission, so that any further admission of the same

person counts as that of a new patient, and we have excluded from the analysis

patients whose history is not concluded (i.e. patients whose last admission is less

that 18 months old), for a total of 19300 patients.

3.1. THE ANALYSIS OF ADMISSIONS BY WARDS

The estimated BN structure for the 19300 patients in the different wards is shown

in Figure 1, and looks quite reasonable: the first inpatient admission directly in-

fluences the second, the third, the fourth and the fifth ones; the second inpatient

admission directly influences the third and the fourth ones; the third inpatient ad-

mission directly influences the fourth and fifth ones; from the fourth inpatient

admission, each admission directly influences only the following one. Notice that

the BN of Figure 1 was obtained by implementing the PC algorithm with a tem-

poral ordering constraint for nodes.

Note that once the BN of Figure 1 has been estimated, it can be employed

in different ways. First, by means of the chain rule decomposition in (1), it can
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be used to compute the joint probabilities of the different patient profiles, which

provide useful informations for a better hospital organization from the point of

view of which wards are more interrelated; Table 1 shows these probabilities for

the most likely patient profiles. Second, it can be used to propagate evidence (in

our case the history of a patient up to a certain stage) through the graph, and to

investigate how such evidence changes the marginal distributions of the remaining

nodes.

Assume, for instance, that the first admission of a patient was in the Surgery

ward. The BN in Figure 2 shows that this evidence modifies the marginal prob-

abilities of the different wards as far as the second admission is concerned: with

respect to Figure 1, the probabilities that the second admission is in Cardio-Neuro-

Vascular, in Onco-hematology, in Medicine decrease, while the probability that

the second admission is again in Surgery increases from 0.48 (in Figure 1) to

0.86 (in Figure 2). Obviously also the probabilities for the following admissions

change. For instance, by comparing Figure 1 with Figure 2 we see that the prob-

ability that the third admission is in Surgery increases, even if the most likely

category for the third admission is none, and the same happens for the fourth

admission.

If we then insert a second evidence in the second node of the network, for in-

stance an admission in Onco-hematology (Figure 3), the situation changes again.

With respect to Figure 2, the probability that there is not a third admission de-

creases from 0.62 (in Figure 2) to 0.43 (in Figure 3), the probability that the

third admission is in Surgery decreases from 0.29 (in Figure 2) to 0.16 (in Fig-

ure 3), while it increases significantly the probability that the third admission is

in Onco-hematology, from 0.04 (in Figure 2) to 0.36 (in Figure 3). Similarly, the

probability that there is not a fourth admission decreases from 0.82 (in Figure 2)

to 0.69 (in Figure 3), the probability that the fourth admission is in Surgery de-

creases from 0.13 (in Figure 2) to 0.08 (in Figure 3), while the probability that the

fourth admission is in Onco-hematology increases from 0.02 (in Figure 2) to 0.20

(in Figure 3).

If we then insert a third evidence in the third node of the network, for instance

an admission in Surgery (Figure 4), the situation changes again. With respect to

Figure 3, the probability that there is not a fourth admission decreases from 0.69

(in Figure 3) to 0.59 (in Figure 4), the probability that the fourth admission is in

Onco-hematology decreases from 0.20 (in Figure 3) to 0.10 (in Figure 4), while

it increases significantly the probability that the fourth admission is in Surgery,

that is now the ward with the highest probability, from 0.08 (in Figure 3) to 0.28
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(in Figure 4). And something similar happens for the following admissions: it is

unlikely that there will be a fifth, sixth or a seventh admission, but if there is one,

then it is probably in Surgery.

3.2. THE ANALYSIS OF ADMISSIONS BY CLINICS

Notice that a similar analysis of that presented in the previous section can be

performed also with respect to the inpatient admissions in the different clinics of

Campus Biomedico, which are shown in Table 2 and whose number is rather large

compared of that of wards. In this case the analysis with the BN is made quite dif-

ficult by the large number of possible clinics at each node of the network, i.e. by

the enormous number of possible patient profiles, most of which are in fact very

unlikely. For this reason, here we are going to limit the number of possible patient

profiles by considering two different scenarios. In the first one we consider inpa-

tient admission in different clinics of Campus Biomedico of patients whose first

two admissions were in the Surgery ward, for a total of 7878 patients; from Table

1 we can see that there are at least seven patient profiles with this feature which

receive a high probability. In the second scenario we consider inpatient admission

in different clinics of Campus Biomedico of patients whose first admission was in

the Cardio-Neuro-Vascular ward, for a total of 4788 patients; again, from Table 1

we can see that this corresponds to different high probability profiles.

Consider initially the first scenario. Figure 5 shows the estimated BN structure

for the patients whose first two admissions were in the Surgery ward with respect

to their admissions in the different clinics: we can see that in this case each ad-

mission directly influences only the following one, so that for instance given the

second admission, the clinic of the third admission is independent of that of the

first admission. As in the previous section, this BN can be used to compute the

joint probabilities of the different patient profiles by means of the chain rule de-

composition in (1), which are shown in Table 3. Moreover, one could insert and

propagate different evidence in the BN, that would change the marginal distribu-

tions of the various nodes.

Consider now the second scenario. Figure 6 shows the estimated BN structure for

the patients whose first admission was in the Cardio-Neuro-Vascular ward with re-

spect to their admissions in the different clinics; also in this case each admission

directly influences only the following one, and this BN can be used to compute

the joint probabilities of the different patient profiles, which are shown in Table 4.
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Probability I admission II admission III admission IV admission V admission VI admission VII admission
0.260 Surgery Surgery

0.149 Cardio-Neuro-Vascular Cardio-Neuro-Vascular

0.068 Surgery Surgery Surgery

0.067 Medicine Medicine

0.037 Cardio-Neuro-Vascular Cardio-Neuro-Vascular Cardio-Neuro-Vascular

0.024 Surgery Surgery Surgery Surgery

0.021 Onco-hematology Onco-hematology

0.020 Medicine Medicine Medicine

0.019 Medicine Surgery

0.013 Surgery Surgery Surgery Surgery Surgery

0.012 Surgery Onco-hematology

0.011 Surgery Medicine

0.011 Onco-hematology Onco-hematology Onco-hematology

0.011 Diagnostics Diagnostics

0.011 Cardio-Neuro-Vascular Surgery

0.009 Cardio-Neuro-Vascular Cardio-Neuro-Vascular Cardio-Neuro-Vascular Cardio-Neuro-Vascular

0.009 Medicine Cardio-Neuro-Vascular

0.009 Medicine Medicine Medicine Medicine

0.008 Cardio-Neuro-Vascular Medicine

0.007 Diagnostics Surgery

0.007 Surgery Surgery Surgery Surgery Surgery Surgery

0.007 Surgery Cardio-Neuro-Vascular

0.006 Onco-hematology Onco-hematology Onco-hematology Onco-hematology

0.006 Surgery Surgery Surgery Surgery Surgery Surgery Surgery

0.005 Onco-hematology Onco-hematology Onco-hematology Onco-hematology Onco-hematology

0.005 Medicine Medicine Medicine Medicine Medicine

0.005 Onco-hematology Surgery

0.004 Surgery Surgery Onco-hematology

Tab. 1: The patient ward profiles with highest probabilities
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Cardio-Neuro-Vascular Surgery Medicine Onco-hematology Diagnostics
Cardiac surgery Short stay surgery Endocrinology Hematology Endoscopy

Cardiology General surgery Hepatology Oncology Interventional radiology

Neurology Geriatric surgery Gastroenterology

Cardiac intensive care unit (CICU) Reconstructive surgery Geriatrics

Thoracic surgery Internal medicine

Gynecology Nephrology

Onco-gynecology

Oculistics

Orthopedics

Otorinolaringoiatry

Rehabilitation

Breast surgery

Urology

Tab. 2: Clinics corresponding to the different wards
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Probability I admission II admission III admission IV admission V admission VI admission VII admission
0.433 Cardiology Cardiology None None None None None

0.107 Cardiology Cardiology Cardiology None None None None

0.096 Cardiology Cardiac surgery None None None None None

0.029 Cardiac surgery Cardiac surgery None None None None None

0.024 Neurology Neurology None None None None None

0.023 Cardiology Cardiology Cardiology Cardiology None None None

0.015 Cardiology Internal medicine None None None None None

0.012 Cardiology Cardiac surgery Cardiac surgery None None None None

0.012 Cardiology Cardiology Cardiac surgery None None None None

0.010 Cardiac surgery Cardiology None None None None None

0.010 Cardiology Cardiology Cardiology Cardiology Cardiology None None

0.008 Cardiology General surgery None None None None None

0.008 Cardiology Urology None None None None None

0.006 Neurology Cardiology None None None None None

0.005 Cardiology Orthopedics None None None None None

0.005 Neurology Neurology Neurology None None None None

0.004 Neurology Geriatrics None None None None None

0.004 Cardiology Geriatrics None None None None None

0.004 Cardiology Cardiology Cardiology Cardiac surgery None None None

0.004 Cardiac surgery Cardiac surgery Cardiac surgery None None None None

0.003 Cardiology Cardiology Cardiology Cardiology Cardiology Cardiology None

0.003 Cardiac surgery Internal medicine None None None None None

0.003 Cardiology Cardiac surgery Cardiology None None None None

0.003 Cardiology Internal medicine Internal medicine None None None None

0.003 Cardiology Cardiology Internal medicine None None None None

0.003 Cardiology Otorinolaringoiatry None None None None None

0.003 Neurology Internal medicine None None None None None

Tab. 4: The patient clinic profiles with highest probabilities (conditional on the first  admissions being in Cardio-Neuro-Vascular)
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4. PREDICTION

We now consider the problem of testing the predictive ability of the BN. It is

important to stress that, given the history of a patient, the task of predicting if

there is going to be a new admission (within 18 months from the last one) is

indeed rather difficult. However, if we condition on the fact that there will be a

new admission, it is interesting to check the performance of the Bayesian network

in predicting the ward (or the clinic) that this will involve. For simplicity this is

be done here by considering patients with exactly five admissions, for a total of

951 patients, and with reference to wards.

Notice that the fundamental idea of predictive validation is to split the data

into two subsets, the training data, that are used to build a model (a BN in our

case), and the validation data, that are used to test the performance of the model

for prediction. With respect to resubstitution validation, this approach has the

advantage of avoiding over-fitting, but the results can be highly dependent on the

choice for the training/validation split. One popular way to deal with this is to

consider cross-validation: in k-fold cross-validation the data is first partitioned

into k equally sized folds; subsequently k iterations of training and validation are

performed, in such a way that within each iteration a different fold of the data

is held-out for validation while the remaining k-1 folds are used for learning.

Notice that this procedure allows for overlapping training sets, while keeping the

validation sets independent, and that the performance of the model on each fold

can be tracked using some performance measure; upon completion, k samples of

the performance measure will be available, and different methodologies such as

averaging can be used to obtain an aggregate measure.

Table 5 shows the results of fivefold cross-validation for predicting the wards

of the fifth admission of patients, given their first four admissions; the proportion

of correct predictions reaches nearly the 82%.

5. CONCLUSIONS AND FUTURE STEPS

The aim of care pathways is to improve the quality of health care from the point of

view of the patient outcomes, safety and satisfaction, and from the point of view

of optimizing the use of resources. One of the key ingredients is the integration of

evidence-based knowledge (Lodewijckx et al., 2012). Care pathways have been

suggested as a way to translate national guidelines into local protocols, and from

a clinical point of view there is enough evidence in their favour to justify further

evaluation of their impact (Campbell et al., 1998). However little attention has
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Predicted
Observed CNV S M OH D

Cardio-Neuro-Vascular (CNV) 105 12 8 6 0

Surgery (S) 13 309 26 17 6

Medicine (M) 14 18 161 8 3

Onco-hematology (OH) 3 18 3 180 3

Diagnostics (D) 4 9 3 0 22

been devoted to studying how care pathways can contribute to the management of

a facility critical resources, such as beds and operating rooms.

The analysis presented in this paper shows how the use of Bayesian networks

allows to obtain important informations about a patient profile that can easily

converge into a care pathway. In particular, we have only been looking at the

patients admissions, i.e. at their administrative history, without introducing purely

clinical variables. One of the main advantages of this approach is that it uses only

data belonging to the routine flow of information that all hospitals provide to the

Local Healthcare Agency and to the Ministry of Health.

Notice that the fact that we have not included in the analysis any clinical vari-

able implies that the quality of the estimates depends significantly on the number

of events that make up the history of the patient. In this sense it is clearly in-

teresting to explore to what extent the estimates of patient clinical paths can be

improved by including in the model further informations both about each admis-

sion (i.e. diagnosis, duration of the hospitalization, time elapsed since previous

admission, medical treatments provided) and about each patient (i.e. age, sex,

potential chronic deseases). The possibility to use these informations in order to

reliably predict both the probability of a future admission and its time frame will

be the object of future research.

Tab. 5: Results of fivefold cross-validation for predicting the wards of the fifth admission

REFERENCES

Aringhieri, R. and Duma, D. (2015). The optimization of a surgical clinical pathway. In M. Obaidat,
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