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Abstract. In a very stimulating paper, Preece gives an artificial dataset useful to
illustrate the hazard of multiple regression and challenges the reader to spot the simple
inbuilt features of these data. The present note aims at finding how Preece generated
the whole set of data. First of all OLS regression model is fitted to the data; after
checking for model assumptions some doubts arise on the validity of OLS regression;
thus robust regression estimators are considered as a proper alternative. The latter
give discordant coefficient estimates, but after a deep analysis, they agree in
highlighting the presence of two subsets within the dataset: 9 cases being generated by
one model, and the remaining 8 cases being generated by a second model. This
particular pattern of the data is recognized by the mixture model as well.
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1. INTRODUCTION

In a very stimulating paper Preece (1986) discusses the features of illustrative
examples used in statistical papers and textbooks and presents critical
considerations on their appropriateness. With regard to regression analysis, the
Author criticizes two examples (one of which is the well known “stackloss
dataset” (Brownlee, 1960, p. 491)), because they are lacking the information
crucial to the conduct of a good analysis and a proper interpretation of its
results. However, in concluding the section, the Author states that: “...the
carefully restricted use of specifically devised sets of artificial data has a place
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in the teaching of regression...” (Preece, 1986, p.39). Then he gives a table of
artificial data to illustrate the hazard of multiple regression and challenges the
reader to spot the simple inbuilt features of these data, but he does not give the
solution. He says: “This feature may be unlikely to arise in practice, but the
difficulty of recognizing it is a clear warning of some of the problems of
multiple regression.” (Preece, 1986, p. 40). As far as we know Huber and
Ronchetti (2009, p. 153) give the solution and state that it can be find
immediately by resorting to projection pursuit (Hastie et al., 2009, pp. 389-
392). However in our opinion, this approach does not seem in accord with
Preece’s provocative proposal, which instead appears to be referred to the use
of statistical routine tools for regression analysis.

Finding a solution to the Preece’s problem was proposed as an exercise to
students attending the “Scuola di Specializzazione in Statistica Sanitaria e
Biometria” at the University of Milan, after their second course of Statistical
Methodology, including a set of lessons on multiple regression analysis. This
note aims to present the approach developed together with the students. This
approach enables deeply investigating the properties of each estimator and
appreciating the differences among their behaviours.

2. PRELIMINARY METHODOLOGICAL CONSIDERATIONS

When there are two carriers (see Table 1), the linear model pertinent to the i-th
case is:
Vi = By + Byxi1 + B,xip + & = X;B +g €Y

where y; is the response variable, x; is the generic carrier vector, g; is the
random error component with i=1, ..., 17. The parameter vector B’ =
[Bo B1 B2] and B indicates any estimate of P, so that the residual is e; = y; —
Vi=Vyi— X;B-

The Preece’s artificial dataset can be processed by the Ordinary Least
Squares (OLS) regression method, whose coefficient estimates (BoLg) are
obtained by minimizing, with respect to B, the objective function:

n n

min ) (v = X{B)* = min ) ¢f
i=1

i=1
As it is known that OLS regression method is very sensitive (or
susceptible) to outliers and offers very poor performance, it is necessary to

check model assumptions by means of single case diagnostics, namely
. . . ooy —1 .
assessing the diagonal elements of the hat matrix, h;; = x; (X X) X; to identify
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leverage points, plotting studentized residuals versus predicted values to detect
y-outliers, drawing q-q plot of studentized residuals to check for normality.
Furthermore plots of studentized residuals versus each carrier can be drawn to
check the appropriateness of the linear component of each carrier. Possible
failures in fulfilling model assumptions can lead the analyst to conjecture that
the data may be heterogeneous in the error component and/or as an effect of the
data generation process. The statistical tools suitable for facing such problems
are known to be the robust regression estimators.

Among the many robust estimators available nowadays (for a detailed
discussion of their characteristics the student is referred to Davies, 1993) we
choose some of them belonging to different classes. As such they are based on
different computational algorithms, but they are all commonly applied in the
statistical literature and are implemented even in open-source statistical
software like R (http://www.r-project.org/). Namely they are:

i) Least Absolute Deviation (LAD) estimator (rq function with option
tau=0.5 in quantreg package); it was introduced by the astronomer Boskovic, in
1757 (see Birkes and Dodge, 1993, p. 57). The corresponding regression
coefficient estimates (B ap) are obtained by minimizing, with respect to B, the

objective function:
n n
min )|y ~ (Bl = min )" e
i=1 i=1

It can be shown (see Seber and Lee, 2003, p. 79) that it is an M-estimator.
ii) Least Median of Squares (LMS) estimator (Rousseeuw, 1984) (lgs
function with option method="Ims", in MASS package). The corresponding
regression coefficient estimates (Bpms) are obtained by minimizing, with
respect to B, the objective function:
mBin M[(y; — x{B)?] = mBin M(ef), withi=1,..,n

where M indicates the Median.

It is a high breakdown point estimator. We recall here that Finite Sample
Breakdown Point is the largest proportion of anomalous data that can occur in a
sample without entailing the possibility of arbitrary large bias (Donoho and
Huber, 1983).

iii) S-estimator (Rousseeuw and Yohai, 1984) (Igs function with option
method="S", in MASS package). The corresponding regression coefficient
estimates (Bg) are obtained by minimizing, with respect to B, the objective
function:

min S(B).
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which is a certain type of robust M-estimate of the scale of the residuals.

It is a high breakdown point estimator.

iv) MM-estimator  (Yohai, 1987) (rlm function with options
method="MM", psi.weights="biweight" in MASS package) which is a two
stage procedure, introduced to improve high breakdown point estimators,
toward higher efficiency. In the first stage the high breakdown point S-
estimator is used to obtain regression coefficient estimates and scale estimate
(65). The regression coefficient estimates are the starting point of the iterative
process of the second stage and the scale estimate is kept fixed during iterations
of the second stage. The ob]ectlve function is now:

mlnz p(yi — xiB) = mmz p(ep)

where p(+) is the Tukey’s blwelght function Wlth tumng constant 4.685, to gua-
rantee 95% efficiency.

In dealing with outliers, it is helpful to consider two analytical paradigms
suitable when facing two different problems, namely the outlier
accommodation problem and the outlier detection problem. In the first one,
prediction or other inferences valid for the basic subset are the aims of the
analysis. Outliers are assumed to be generated by some uncommon mechanism,
alternative to the one generating the basic subset, poorly predicted by the model
and not of great interest to the analyst. In the second paradigm, outliers are of
primary concern: “Parameter estimates are needed merely to investigate the
discordance of certain observations.” (Ruppert and Simpson, 1990, p. 644).

Finding how Preece generated the whole set of 17 data reported in Table 1
is the goal of our exercise, thus the second paradigm seems appropriate to look
for the solution.
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Table 1: Preece sartificial dataset

1D X, X, y
1 9.1 54 30.9
2 10.7 8.0 58.8
3 11.4 7.3 56.7
4 13.8 79 67.5
5 14.1 3.9 324
6 14.5 4.1 46.7
7 8.3 3.7 13.2
8 12.6 6.4 55.2
9 7.3 6.3 33.6

10 7.9 6.4 36.4

11 9.2 7.2 47.2

12 15.8 5.9 64.5

13 12.9 6.4 51.3

14 51 53 175

15 10.1 55 34.8

16 10.3 2.6 194

17 10.0 7.8 55.2

3. RESULTS

3.1 ORDINARY LEAST SQUARES REGRESSION

As a first step the Preece’s artificial dataset, given in Table 1, was processed by
the OLS method. The coefficient estimates are BoLs = (—43.477,3.724,
7.778)' and the corresponding regression ANOVA is reported in Table 2. We
observe that the Sums of Squares of x; (Table 2.A) and x;[x, (Table 2.B) are
similar and the same happens for the Sums of Squares of x, (Table 2.B) and
x,[x; (Table 2.A); furthermore the correlation coefficient between x; and x; is
(X, X)=0.008. These findings justify the use of both carriers in the regression
model. With regard to leverages, no case exceeds the empirical cut-off 2p/n
(0.353), where p=3 is the number of regression parameters and n=17 is the
number of cases in the dataset. Considering the plot of studentized residuals
versus predicted values, reported in Figure 1, we can see that no particular
pattern emerges and all studentized residuals are within the empirical thresholds
(-2, 2), except case 5. Plots of studentized residuals versus each carrier,
reported in Figure 2, do not enlighten any non linear effect of the carriers. An
interaction term between x; and X,, added to model (1) is far from being
significant (ANOVA table not shown). From these findings a misspecification
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of the regression model does not appear. On the other hand the studentized
residual g-q plot, drawn in Figure 3, raises doubts about the presence of a
unique normal distribution of the residuals and/or the homogeneity of the data
in the sample; it is to explore this possibility further that we resorted to robust
regression analysis.

Table 2: Regression ANOVA for model (1)

A
Source of Degrees of Sum of Mean
variability freedom Squares square
X, 1 1874.60 1874.60
XX, 1 2438.88 2438.88
Residual 14 131.90 9.42
B
Source of Degrees of Sum of Mean
variability freedom Squares square
Xy 1 2471.80 2471.80
XX, 1 1841.70 1841.70
Residual 14 131.90 9.42

A and B differ for the order of carriersinclusion in the model.
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Figure 1: OLSregression model: plot of studentized residuals versus predicted values,
together with pertinent threshold values
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Figure 3: Studentized residual g-g-plot for OL Sregression
3.2 ROBUST REGRESSIONS

The dataset was processed by the four previously mentioned robust regression
methods and two different scenarios emerge, the first one supported by LAD
and LMS procedures and the second one supported by S-estimator and MM-
estimator.

The LAD and LMS regression coefficient estimates are Bpap = Prms =
(—40,4,7)". They enable computing the 17 predicted values: X;Bjap; nine of
these form the subset [1]: (2, 3, 6, 8, 10, 11, 12, 14, 16); they are equal to the
corresponding y;, thus they give null residuals e;, whereas the remaining eight
cases, forming the subset [2], do not. At this point one may argue that data in
the subset [2] could have been generated according to two different alternatives,
namely: i) response values could be the predicted values of the same model as
in the subset [1] but with the addition of a random error term (see model (1));
otherwise ii) they could be the predicted values of a different model still to be
found. To try to distinguish between the two alternatives, it appears convenient
to fit the following model to the whole dataset by means of the OLS method:

Vi = By + By Xix + ByXiz +v,di + v, dixin +v,dixiz + & (2)
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where d; is a dummy variable assuming value 0 for the cases belonging to
the subset [1] and value 1 for the cases belonging to the subset [2]. The
quantities o, v, and y, account for the possible differences of the regression
coefficients between the model M; () fitted to the subset [1] and the model
M, (9) fitted to the subset [2]. In the first alternative of data generation,
previously outlined, the estimates of vy, y; and y, are expected to be null,
whereas in the second alternative they are expected to be different from 0, so

that the 3 components of 9 are estimated as (60 +9, 61 +9, Bz + ?2) .

The OLS estimates of model (2) result in: B = (—40,4,7) and ¥ =
(=5,—1,2), so that § = (—45,3,9)". Table 3 reports the regression ANOVA
on model (2). The null Error Sum of Squares suggests that even in the subset

[2] the residuals are null, thus y; exactly equals ¥;, as predicted by model
M, (9).

Table 3: Regression ANOVA for model (2)

Sour ce of variability Degr ees of freedom Sum of Squares Mean square
X, 1 1874.60 1874.60
X,| X, 1 2438.88 2438.88
subtotal (x,, X,) 2 4313.48

dix,, x, 1 66.94 66.94
dx, | d, X, X, 1 26.07 26.07
d*x | d*x,, d, X, X, 1 38.89 38.89
subtotal (d, d*x,, d*X,| X, X,) 3 131.90

Error 11 0 0

Note that the estimate 9 is equal or very similar to the corresponding
regression coefficient estimates obtained by S-estimator (ﬁs = (—45, 3,9)')
and by MM-estimator (ﬁMM = (—45.20,3.03, 8.98)’) respectively.

It may be surprising that the LAD and LMS estimators give regression
coefficient estimates equal to those of subset [1], whereas S and MM estimators
give regression coefficient estimates equal to those of subset [2]. This can be
justified by the differences in the objective functions to be minimized and by
the use of different computational algorithms. For a detailed discussion the
student is referred to Barrodale and Roberts (1974) and to Marazzi (1993).



104 Marubini, E., Orenti, A.

However, under the outliers detection paradigm mentioned in section 2
(Preliminary methodological considerations), S and MM-estimators agree with
LAD and LMS procedures in considering y = —40 + 4x; + 7x, suitable for
fitting the nine cases in subset [1] and y = —45 + 3x; + 9x, suitable for fitting
the eight cases in subset [2].

3.3 ERROR MEAN SQUARE ESTIMATES

It is now instructive to compare the regression ANOVA exhibits obtained by
OLS method in fitting the artificial dataset “ignoring” the data generation
process (model (1), Table 2) and “knowing” the data generation process (model
(2), Table 3). A total of 3 degrees of freedom (d.f.) is spent to account for the
previously mentioned increase of information; in fact 14 d.f. of the Residual
Sum of Squares in Table 2 reduce to 11 d.f. of the Error Sum of Squares in
Table 3. Correspondingly the Residual Sum of Squares = 131.9 (Table 2) is
split in the three sources of variability (d, d*x;, d*x;), whose sum of Sum of
Squares equals 131.9. Consequently no Error Sum of Squares is available and
this agrees with the fact that in this artificial dataset the responses (y) equal the
values predicted () by one model for subset [1] and by an alternative model for
subset [2]. Actually the Residual Sum of Squares in model (1) is not due to the
error component but to the fact that the model is not “saturated”, i.e. not all the
sources of variability have been explained.

In view of these comments we reconsider the studentized residuals
computed at the beginning of the analysis ignoring the dataset generation

process. The Residual Mean Square % = 9.42 is actually a biased estimate of

the true error variance 6°=0, as OLS assumption of data homogeneity is not
fulfilled in this dataset. This drawback is emphasized in this case by the
absence of error variance, but it may happen even in the presence of 6°#0,
provided that the difference between the models generating the two subsets of
the dataset is sufficiently large.

3.4 MIXTURE MODEL VIA EM

One further available tool is obtained by applying the Expectation
Maximization (EM) procedure (Dempster et al., 1977) to face the problem of
mixture models (flexmix function in flexmix package), as suggested by Aitkin
and Wilson (1980).
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The EM algorithm is a general iterative method to find the maximum-
likelihood estimate of the parameters of an underlying probability density for a
given data set. In its simplest form the probability model for the data is given
by the mixture of two Normal densities:

f(y) = (1 = 8)fi(y) + 8f,(y)

where (1-8) is the proportion of data belonging to the first subset with
probability density fi(y), and f,(y) refers to the probability density of the second
subset.

Resorting to robust method one assumes that the main part (100%-5,
0<38<50%) of the data (basic subset or bulk) is concordant with a single model,
say M; (B), whereas the remaining & is discordant from it. The latter includes
different kinds of outlying observations: y-outliers, x-outliers or both.

Preece dataset was processed by mixture model using EM procedure. Two
different clusters were identified: one containing observations 1, 4, 5, 7, 9, 13,
15, 17 and the other containing observations 2, 3, 6, 8, 10, 11, 12, 14, 16. These
clusters overlap subset [2] and [1] respectively. OLS regression models were
fitted to each of them. As expected the regression coefficient estimates were
equal to those previously reported and the corresponding error variance
estimates were null.

4. ISSUES DESERVING A DEEP DISCUSSION

Three aspects of this artificial dataset deserve to be discussed with the students:

i) the small sample size (n=17). Its ratio to the number of carriers (p-1=2)
corresponds almost to the minimum widely accepted as a rule of thumb, 8;

ii) 9 cases belong to subset [1] and 8 cases belong to subset [2]. Is it
meaningful in this context to refer to an outliers accommodation paradigm?

iii) the choice of y; = §;, i.e. 62 = 0. Possible extension of the analysis can
be performed after adding i.i.d. error terms.

Finally, it is to be said that the exercise was found to be appealing for
enabling the students to have a systematic refreshment of the topics developed
in the whole course on regression analysis.
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