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1. INTRODUCTION

An important aspect in many clinical and health studies is the assessment of health

related quality of life (HrQoL). Researches on HrQoL have drawn much recent in-

terest particularly for chronic diseases (such as HIV-infection or cancer) of which

lack of a definitive cure is a common feature. The aim of clinical trials carried

out in medicine is to estimate efficiency and safety of new therapies. HrQoL is

a subjective complex concept reflecting the idea of well-being with respect to the

context where the person lives. In clinical studies, HrQoL reflects two notions:

well-being physically (not to feel pain, not to be ill) and well-being mentally (to

have good relations with the others, not to be stressed). Despite growing impor-

tance of HrQoL outcomes and more generally of patient-reported outcomes in

medical research satisfactory methods of analysis of these data remain an issue.
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Considered here are longitudinal clinical studies, in which patients are asked

to fill out HrQoL questionnaires on some dates t. Let Q(t) denote the result-

ing HrQoL score at time t that can be physical or mental, or a combination of

both. They are considered as variables defined on a scale with higher values cor-

responding to better HrQoL. Assuming that Qt <Q0, define the amount of relative

degradation of HrQoL at t to be Dt = (Q0 −Qt)Q
−1
0 , which reflects the relative

change of HrQoL from the initial date t0. Some authors in epidemiological or

clinical studies choose the definition Dt = Q0 −Qt .

Awad et al. (2002) proposed to analyze degradation of HrQoL by considering

the event of first time when degradation of HrQoL is over a prefixed threshold x.

Thus, for each value x, there corresponds a time variable, which may be censored

if the Dt does not fall below x for the entire study period. This effectively converts

the longitudinal observations into survival times. Consequently, classical statis-

tical methods for survival data, including the Kaplan-Meier curve, the log-rank

test and the Cox regression, can be made use of. In particular, Boisson and Mes-

bah (2008) derived a log-rank test for treatment difference by choosing a fixed

threshold x of degradation of HrQoL.

This paper is the continuation along the line of Awad et al. (2002) and Bois-

son and Mesbah (2008). By varying the relative degradation threshold x, we obtain

a group of survival data sets, which naturally contain more information than any

individual one with a single x. We propose non- and semiparametric methods for

simultaneously incorporating the entire group of data sets. The theoretical prop-

erties of the resulting methods are studied for the continuous time version using

empirical process theory.

Under our formulation, analysis of degradation with HrQoL data lies in the

interface of survival analysis (Andersen et al., 1993; Cox, 1972) and longitudinal

data analysis (Diggle et al., 2002; Verbeke and Molenberghs, 2000). Theoretical

properties for the Cox partial likelihood methods (Cox, 1975) can be found in

Tsiatis (1981a), Tsiatis (1981b), and Andersen and Gill (1982). Our approach

requires understanding of the partial likelihood score process index by an ad-

ditional argument x. This is similar to the two-parameter score process which

arises from group sequential designs for clinical trials as studied in Bilias, Gu and

Ying (1997). The formulation of converting longitudinal process to event time via

threshold-crossing is similar in spirit to recent development in finance. There, the

time to a certain event of interest, such as change of credit rating or bankruptcy,

is defined as hitting time of an underlying stochastic process, which indicates the

well-being of a company, at a certain value; see Duffie, Saita and Wang (2007);
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Hull (2008). Nevertheless, the way that we deal with the problem is slightly dif-

ferent. We focus on the problem of testing the effect of an observed covariate

(in the current paper, we assume that it is binary). We then bypass the physical

degradation process and directly deal with the log-rank statistics constructed from

the event times and indexed by the threshold value x.

The paper is organized as follows. In Section 2 we give some properties of

degradation of HrQoL. In Section 3 we introduce some notations and assump-

tions. In Section 4 we derive a partial likelihood score statistic for a survival time

depending on a fixed rate x while the asymptotic properties of the derived parame-

ters estimators are shown in an annexed section. In Section 5 we derive a log-rank

statistics U(x) to compare time to degradation of HrQoL between two treatment

groups when the rate x is fixed. In Section 6, we show that, for fixed n, n−1/2Un(.)

is a Gaussian process, and in Section 7 we derive a nonparametric statistical test

for joint longitudinal evolution of HrQoL and survival of treatment effect called

global log-rank test. It is the main result of the paper. The proposed test is ap-

plied in Section 8 to a data set from a real cancer study. Concluding remarks are

presented in Section 9.

2. BASIC PROPERTIES OF RELATIVE DEGRADATION OF HRQOL AND

TIME TO DEGRADATION

Recall that Qt denotes the HrQoL of a patient measured at time t and that Dt =

(Q0 −Qt)Q
−1
0 (or Dt = Q0 −Qt) is the relative degradation of HrQoL. For math-

ematical convenience, we may consider that time t is measured continuously over

interval [O,C]. So, the time of degradation of HrQoL is defined by

T (x) = inf{t ≤C : Dt ≥ x}.

Due to HrQoL questionnaires higher scores correspond to better HrQoL,

some basic properties of degradation of HrQoL can be obtained.

Proposition 1:

For the threshold induced event time T (x), the following results hold. Here t

can be either discrete or continuous.

1. D0 = 0, i.e. the rate of degradation of HrQoL is 0 at origin;

2. Dt > 0 if and only if the HrQoL score at t is smaller than that at the baseline

0;
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3. x1 > x2 implies P(Dt > x1)≤ P(Dt > x2).

4. T (x) is monotone increasing in x, meaning that a higher threshold produces

a larger event time.

Proof. Straightforward from the definition of Dt .

3. NOTATIONS AND ASSUMPTIONS

Consider a clinical study with n independent patients. Let Zi(t) denote time-

dependent covariate vector and Di,t the rate of degradation of HrQoL at time t

for patient i, i = 1, . . . ,n. Time t is assumed to be continuous. Furthermore, let

Ci denote the (right) censoring time. For a prefixed threshold value x, the asso-

ciated survival time is denoted by Ti(x) for patient i, as introduced in the preced-

ing section. We shall assume that, for each i, censoring times Ci is independent

of {Di,t , t ≥ 0}. Consequently, Ci and Ti(x) are independent for all x. Define

T̃i(x) = min{Ti(x),Ci} and δi(x) = 1(Ti(x)≤Ci), which characterizes whether or not

the degradation of HrQoL is observed. Thus the observations consist of n triplets

containing a duration, a censoring indicator and the observed path of the covariate

process till event of interest.

It is well known that information included in the pair (T̃i(x),δi(x)) is equiva-

lent to information included in the corresponding counting processes Ni(.,x) and

Yi(.,x), which are defined respectively by

Ni(t,x) = 1(T̃i(x)≤t,δi(x)=1)

and

Yi(t,x) = 1(T̃i(x)≥t).

We consider a generalization of the classical framework of the proportional

hazard regression model of Cox (1972) in order to take into account rate x of

degradation of HrQoL. The hazard function, for a patient i, λi is defined by

λi(t,x|Zi(t)) = λ0(t,x)exp{β ′Zi(t)}

where β is the unknown vector of regression parameters and λ0 is the unspecified

baseline hazard function. We can now introduce an extension of the multiplicative

intensity model in order to take into account rate x of degradation of HrQoL.
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DEFINITION 1: The multiplicative intensity model for a random time de-

pending on a critical value x of HrQoL for observations from n independent pa-

tients (or items) consists of n triplets {Ni(.,x),Yi(.,x),Zi}i=1,...,n, a right-continuous

filtration {Ft,x; t ≥ 0} representing the statistical information occurring over time

and n intensity processes li(t,x) = λ0(t,x)e
β ′Zi(t)Yi(t,x), i = 1, . . . ,n, along with

the additional assumptions,

1. N(.,x) = (N1(.,x), . . . ,Nn(.,x))
′ is a multivariate counting process, from

which it follows that for any t ≥ 0 and i � j,

P(∆Ni(t,x) = ∆Nj(t,x) = 1) = 0.

2. For each i, Mi(.,x) = Ni(.,x)−Ai(.,x) is a local martingale with respect to

{Ft,x; t ≥ 0}, where Ai(.,x) is the continuous compensator

Ai(t,x) =

∫ t

0
λ0(u,x)e

β ′Zi(t)Yi(u,x)du.

3. Each of the censoring processes Yi(.,x) and covariate processes Zi is pre-

dictable with respect to {Ft,x; t ≥ 0} and Zi are locally bounded processes.

We also introduce a generalization of some classical and important notations and

assumptions in order to take into account a rate of degradation of HrQoL.

For all k = 0,1,2,

S(k)(β , t,x) =
1

n

n

∑
i=1

{Zi(t)}⊗kYi(t,x)exp{β ′Zi(t)}, (1)

E(β , t,x) =
S(1)(β , t,x)

S(0)(β , t,x)
(2)

and

V(β , t,x) =
S(2)(β , t,x)

S(0)(β , t,x)
−{E(β , t,x)}⊗2. (3)

with for all vector X, X⊗0 = 1, X⊗1 = X and X⊗2 = XX′.
Assumptions The following assumptions will be used.

(A1) The time C is so that
∫ C

0 λ0(u,x)du < ∞.
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(A2) For S( j), j = 0,1,2 defined in (1) there exists a neighborhood B of β0, a

neighborhood X of x and scalar s(0), vector s(1) and matrix functions s(2)

defined on B× [0,C]×X so that, for j = 0,1,2,

sup
(β ,u,x)∈[0,C]×B×X

||S( j)(β ,u,x)− s( j)(β ,u,x)||∞

converges in probability to 0,

(A3) There exists a δ > 0 such that

1√
n

sup
(i,u,x)∈[0,n]×[0,C]×X

|Zi(u)|Yi(u,x)1{β ′
0Zi(u)>−δ |Zi(u)|}

converges in probability to 0,

(A4) Let B, X and s( j), j = 0,1,2, be as defined in (A2) and let

e =
s(1)

s(0)

and

v =
s(2)

s(0)
− e⊗2.

Then, for all β ∈ B, x ∈ X and 0 ≤ u ≤C,

∂

∂β
s(0)(β ,u,x) = s(1)(β ,u,x)

and
∂ 2

∂β 2
s(0)(β ,u,x) = s(2)(β ,u,x).

(A5) The functions s( j), j = 0,1,2, are bounded on B× [0,C]×X and, more-

over, s(0) is bounded away from 0 on B× [0,C]×X ; for j = 0,1,2, the

family of functions s( j)(.,u,x),0 ≤ u ≤C and x ∈ X is an equicontinuous

family (Rudin, 1974) at β0.

(A6) The matrix

Σ(β0,C,x) =

∫ C

0
v(β0,u,x)s

(0)(β0,u,x)λ0(u,x)du

is strictly positive definite.
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4. PARTIAL LIKELIHOOD SCORE STATISTICS FOR FIXED x

Let D[0,C] be the space of functions on [0,C] which are right continuous with left

hand limits. We can now state the partial likelihood score statistic for fixed x.

Proposition 2:

Suppose that Assumptions (A1)-(A6) hold for the multiplicative intensity

model. We have the following properties.

1. The normalized vector score processes {n−1/2U(β0, t,x);0 ≤ t ≤C} whose

value at time t is

1√
n

U(β0, t,x) =
1√
n

n

∑
i=1

∫ t

0
{Zi(u)−E(β0,u,x)}Ni(du,x),

converges weakly in (D[0,C])p to a mean zero p-variate Gaussian process

so that each component process has independent increment and the covari-

ance function at instant t for components l and l′ is

Σ(β0, t,x)ll′ =

∫ t

0
{v(β0,u,x)}ll′ s

(0)(β0,s)λ0(u,x)du;

2. If β̂ is a consistent estimator of β0, then

sup
0≤t≤C

||1
n

∫ t

0

n

∑
i=1

V(β̂ ,u,x)Ni(du,x)−Σ(β0, t,x)||∞,

where V(β̂ , .,x) is defined like in (3), converges in probability to 0.

The information matrix I can be defined by

I (β , t,x) =

∫ t

0

n

∑
i=1

V(β ,u,x)Ni(du,x).

So part (2) of T heorem 5.3.5 in Fleming and Harrington (1991) shows that

n−1I (β0, t,x) and n−1I (β̂ , t,x) are uniformly on [0,C] consistent estimators of

the variance function Σ(β0,C,x) of the score process at β = β0.

The consistency and asymptotic normality of the maximum partial likelihood

estimator β̂ of β and the asymptotic distribution of
√

n(Λ̂0 −Λ0), where Λ̂0 is a

generalization of the estimator proposed by Breslow (1972), are obtained (Boisson

and Mesbah, 2008).
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5. LOG-RANK STATISTICS FOR FIXED x

Let A and B be two groups of patients (undergoing different treatments for ex-

ample). In this part covariates are reduced to Zi = 1(i∈B) the indicator variable of

group B. Let nA(t,x) = ∑i∈A1(Ti(x)≥t) (respectively nB(t,x) = ∑i∈B1(Ti(x)≥t)) the

number of patients at risk (i.e. not degraded) in group A (respectively B) at time

t for a fixed rate x of degradation of HrQoL and let n(t,x) = nA(t,x) + nB(t,x)

be the total number of not degraded patients. The null hypothesis of test is

H0 : SA(t,x) = SB(t,x) where the survival functions are identical for the two groups

versus the alternative hypothesis H1 : SA(t,x) � SB(t,x) where the survival func-

tions are not the same.

Define the log-rank statistic Un(x) and its variance estimator ˆVar(Un(x))

Un(x) =
n

∑
i=1

{
Zi − nB(Ti(x),x)

n(Ti(x),x)

}

and

ˆVar(Un(x)) =
n

∑
i=1

nA(Ti(x),x)nB(Ti(x),x)

n2(Ti(x),x)
.

The asymptotic distribution of the test statistic and consistency of its variance

estimator under the null hypothesis can be obtained similarly to those given in

Fleming and Harrington (1991).

Proposition 3:

For any fixed x, n−1/2Un(x) converges in distribution to N (0,σ 2
U(x)). Fur-

thermore, n−1 ˆVar(Un(x)) converge to σ 2
U(x).

6. LOG-RANK STATISTIC AS A STOCHASTIC PROCESS WHEN x IS

VARYING

We now consider the case that x, the rate of degradation of HrQoL, is varying.

We establish below that the test statistic Un(x), as a function of x and normalized

by
√

n, converges weakly to a zero-mean Gaussian process. Instead of applying

the martingale central limit theorem, the proof involves using empirical process

theory.

Proposition 4:

The score process n−1/2Un(.) converges weakly to a Gaussian process with

mean 0 and covariance function Γ, which is defined below.
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Proof. Since patients are independent, the random variables Zi are indepen-

dent. We have

Un(x)=
n

∑
i=1

{
Zi −

∑n
j=1 Z j1(Tj(x)≥Ti(x))

∑n
j=11(Tj(x)≥Ti(x))

}
=

n

∑
i=1

∫ {
Zi −

∑n
j=1 Z j1(Tj(x)≥Ti(x))

∑n
j=11(Tj(x)≥Ti(x))

}
d1(Ti(x)≤t)

=
n

∑
i=1

∫
{Zi −Z(t,x)}{d1(Ti(x)≤t)−1(Ti(x)≥t)dΛx(t)}

where Z(t,x) =
∑n

j=1 Zj1(Tj(x)≥t)

∑n
j=1 1(Tj(x)≥t)

and Λx(t) is the cumulative hazard of the random

time Ti(x). It is easy to see that Mi(t,x) = 1(Ti(x)≤t)−
∫ t

0 1(Ti(x)≥s)dΛx(s) is a mar-

tingale. Consequently

1√
n

Un(x) =
1√

n

n

∑
i=1

∫
{Zi −Z(t,x)}Mi(dt,x).

For all fixed rate of degradation of HrQoL x, n−1/2Un(x) is asymptotically

a Gaussian variable and we will prove below that n−1/2Un(.) is asymptotically a

Gaussian process.

Under the hypothesis H0 the random variables Ti(x) are independent and iden-

tical distributed. Let gZ(t,x) = limn→∞ Z(t,x), we obtain

1√
n

Un(x) =
1√
n

n

∑
i=1

∫
{Zi −gZ(t,x)}Mi(dt,x)+op(1),

Un(x)=
n

∑
i=1

{
Zi −

∑n
j=1 Z j1(Tj(x)≥Ti(x))

∑n
j=11(Tj(x)≥Ti(x))

}
=

n

∑
i=1

∫ {
Zi −

∑n
j=1 Z j1(Tj(x)≥Ti(x))

∑n
j=11(Tj(x)≥Ti(x))

}
d1(Ti(x)≤t)

=
n

∑
i=1

∫
{Zi −Z(t,x)}{d1(Ti(x)≤t)−1(Ti(x)≥t)dΛx(t)}

a sum of independent random variables of mean zero, ignoring the op(1). Furthermore Ti(x)

monotone in x and for Zi = 1(i∈ B), there exists a constant C such that Z dZ C
i i

C
1 1

0
+ ≤∫

and for each k =0,1,2, for allt,x and limn i

n

n→∞ =∑1
1

E Z Y t x Z
i

k
i i

⊗ ( , ) exp( )'β0  exists by

the law of large numbers. So by applying Theorem 3.2 of Bilias, Gu and Ying

(1997), n-1/2Un(.) converges weakly to a Gaussian process with covariance function

Γ defined as

Γ(x,x′) = lim
n→∞
E

(
1

n
Un(x)Un(x

′)
)

= lim
n→∞

1

n

n

∑
i=1

E

[∫
{(Zi −Z(t,x))Mi(t,x)dt} ×

∫
{(Zi −Z(t,x′))Mi(t,x

′)dt}
]
.

Let Γ̂ be an estimator of Γ defined as

Γ̂(x,x′) =
1

n

n

∑
i=1

[∫
{(Zi −Z(t,x))M̂i(t,x)dt} ×

∫
{Zi −Z(t,x)M̂i(t,x

′)dt}
]
, (4)
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where M̂i are the same as Mi except with Λ replaced by the usual Nelson-Aalen

estimator.

Proposition 5:

The estimator Γ̂ is consistent, i.e. Γ̂(x,x′) converges in probability to Γ(x,x′)
for all x and x′.

Proof. The result is a consequence of the consistency of the Nelson-Aalen

estimator and repeated applications of the law of large numbers.

7. GLOBAL LOG-RANK TEST

Although we can estimate Γ by Γ̂, most statistics based upon the score process

will have complicated limiting distributions. Specifically, we are interested in

Kolmogorov-Smirov-type supremum test statistic sup0<x<1 |n−1/2Un(x)|. Indeed,

its limiting distribution does not have any readily usable analytical form so that its

p-value can be calculated. We propose to a simple simulation based approach for

p-value approximation.

Consider (ξ1, . . . ,ξn) a vector of n independent and identically distributed

random variables of N (0,1) and let

1√
n

U∗
n (x) =

1√
n

n

∑
i=1

ξi

∫
{Zi −Z(t,x)}dM̂i(t,x).

The covariance matrix

Cov

(
1√
n

U∗
n (x) ,

1√
n

U∗
n (x

′)
)
=

1

n

n

∑
i=1

E

[∫
{Zi −Z(t,x)}dM̂i(t,x) ×

∫
{Zi −Z(t,x′)}dM̂i(t,x

′)
]

= Γ̂(x,x′)→ Γ(x,x′), (5)

as n → ∞, where the first equality follows since ξi are i.i.d. with mean zero and

variance 1 and are independent of the data. Thus, it follows that n−1/2U∗
n (x) has

the same asymptotic covariance and consequently the same asymptotic distribu-

tion as n−1/2Un(x). Thus we can approximate the distribution of n−1/2Un(x) by

simulating a large number (say 1000 or 10000) of realizations of n−1/2U∗
n (x) by

repeatedly generating random vectors (ξ1, . . . ,ξn) while holding the observed data

(Xi(x),δi(x),Zi) fixed. We then obtain a nonparametric statistical test for treat-

ment effect of longitudinal evolution of HrQoL and survival.
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With the above results, we now define our global log-rank test as the supre-

mum test statistic S ≡ sup0<x<1

∣∣n−1/2Un(x)
∣∣. To find its p-value, suppose that s is

the observed value of S. Let Ŝ = sup0<x<1

∣∣n−1/2U∗
n (x)

∣∣. The p-value of the global

log-rank test P(S > s) can be approximated by P(Ŝ > s), which can be estimated

by a great number of realizations (say 1000 or 10000) from Ŝ.

The idea of using simulation based processes to find the p-value of a test statis-

tic whose distribution may not be analytically tractable dates back to Lin, Wei

and Ying (1993). See also Lin, Wei and Ying (2002), Pan and Lin (2005) and

Martinussen, Aalen and Scheike (2008).

8. SIMULATIONS

We conducted simulations to evaluate performance of the proposed global

log-rank-type test. They are implemented using SAS. To that end different data

sets which represent longitudinal HrQoL evolution are simulated for two groups.

We consider that patients’ HrQoL evolves linearly, i.e. Qt = a0 +b0t for group 0

and Qt = a1+b1t for group 1. We also consider two scenarios to convey variability

of patients’ answers compared with the theoretical straight line. In the first one,

slope and initial score of HrQoL are disrupted by a white noise consisting of both

random effect and fixed effect, whereas in the other one, slope and initial score

of HrQoL are disrupted by an autoregressive process (AR(1)) (Doob, 1953). We

also simulate missing data and dropout by Bernoulli law of parameters 0.90 and

0.95 respectively. Furthermore, we consider two cases, in the first one evolutions

of the two groups of patients are different with a0 = 28, a1 = 40, b0 = 1 and

b1 = 15 whereas in the second we make the null hypothesis H0 with a0 = a1 = 28,

b0 = b1 = 1. We examine different situations in varying one of the following

parameters: size of sample, number of dates, percentage of each group, percentage

of dropout and missing data and number of simulated curves. We also consider

each definition of degradation of HrQoL, Dt = (Q0 −Qt)Q
−1
0 and Dt = Q0 −Qt .

We consider the following values of reference: 300 patients, 7 dates of visits, 100

simulated curves, same number of patients in each group and with presence of

dropout and missing data. Indeed these values correspond to classical situations

in practice (Protopopescu, 2007).

Results of simulations (see Table 1) show that the test is operational. Despite

the fact that there is often a misunderstanding in its interpretation, we choose to

present results of our simulations in terms of estimated p-values, which remain,

in real applied statistics, the gold standard. The right part of current Table 1, is

built, to estimate the p-value, when data come from a true underlying distribution
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H0 two confounded straight lines: a0 = a1 = 28, b0 = b1 = 1), i.e., to estimate:

p = Prob (to reject H0, using our method, while data are truly H0) while its left

part is built to estimate the p-value when data comes from a true underlying dis-

tribution H1 (two different straight lines: a0 = 28,a1 = 40, b0 = 1,b1 = 15), i.e.,

to estimate: p = Prob (to reject H0, using our method, while data are truly under

a specific alternative H1). We see "significant" p-value (small) when the two lines

are theoretically confounded, and non significant p-values, when they are differ-

ent. Most of the time, our method detect such departure from the null hypothesis.

When simulations are done under the null hypothesis, we see a kind of decreasing

of the p-value, when the number of patients or its percentage in group 0 increase.

9. A REAL EXAMPLE

In this section we applied the proposed test to real data from a clinical trial of treat-

ment for metastatic colorectal cancer. In this trial, HrQoL was measured using

the QLQ-C30 instrument (Aaronson et al., 1993). It is a questionnaire with thirty

items self completed by patients. The QLQ-C30 permits by linear transformations

to obtain fifteen scales for analysis. These scales include five functional scales,

nine symptom scales and one global health status/quality-of-life scale (QL). We

only analyze the QL scale and we characterize degradation of HrQoL by an ab-

sorbing state like defined in Section 2. A more detailed description of the study

was reported by Awad et al. (2002) and Mesbah et al. (2004).

In our implementation, the p̂-value for supremum test is based on 1000 real-

izations from Ŝ when the degradation of HrQoL is defined by Dt = (Q0−Qt)Q
−1
0 .

In each graphical display, the observed process is indicated by a solid curve while

thirty simulated processes are plotted in dotted curves.

One hundred and twenty-two patients were randomized in group A and one

hundred and twenty-one were randomized in group B during one year. We con-

sider time to event of degradation of HrQoL for a fixed rate x as duration in days

between baseline and occurrence of the event of degradation of HrQoL for this

rate x. Figure 1 plots process n−1/2Un (solid curve) along with thirty simulated

processes n−1/2U∗
n (dotted curves) when the rate x goes over from 0 to 1. It ap-

pears that the solid line lies well inside the “band” formed by the dotted lines,

except for x close to 0 where the solid line is close to but still somewhat below

the upper boundary. This indicates that the proposed global log-rank test is most

likely to result in a non-significant p-value at 5% level. Indeed, the p̂-value of the

global log-rank test is 0.094.

Due to the duration of protocol cycle and therefore the frequency of HrQoL
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Figure 1: Process n–1/2U
n 
score according to rate of degradation of HrQoL. Time to event of

degradation of HrQoL expressed in days.

Figure 2: Process n–1/2U
n 
score according to rate of degradation of HrQoL. Time to event of

degradation of HrQoL expressed in cycle.
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evolution different for the two groups, analysis of degradation of HrQoL was per-

formed according to time interval which corresponds to seven-week period of

chemotherapeutic treatment. This allows the response to questionnaires process

to be more balanced between the two treatment groups and more close to the de-

signed clinical trial protocol. Nevertheless, the recorded date in the data is the

real date of medical visit, which in practice cannot be scheduled at a pre-specified

date for all patients, but is adapted to each patient and doctor. Moreover, the real

date of HrQoL’s questionnaire is the exact date when the patient fills out the form.

This date is not necessary the date of medical visit. Our method allows us to use

those exact dates, instead of using specifically chosen cycles as in Awad et al.

(2002). In Figure 2, the same graphic as in Figure 1 is plotted, with a different

time scale, which is now expressed in seven-week periods. In this case, the solid

line lies almost at the upper extreme for x values up to about 0.3. It indicates that

the resulting test probably attains the statistical significance at 5% level. Indeed,

the p̂-value of the global log-rank test is 0.032 and therefore the test gives more

significant result. This is consistent with Awad et al. (2002) results, where no

global test was used.

10. SUMMARY AND CONCLUSION

In clinical trials the length of specific disease or treatment stages and evolution of

HrQoL are of interest to practitioners. Degradation of HrQoL enables us to reflect

evolution of HrQoL as compared to the baseline. This article is motivated by the

need to develop statistical methods in order to analyze degradation of HrQoL in-

dependently of any previously fixed rate x of degradation of HrQoL. The primary

goal of this article is to perform a nonparametric statistical test for evolution of

HrQoL to be used in clinical research by practitioners. The resulting log-rank-

type test does not make any assumption on process of degradation of HrQoL and

on threshold x.

We started by extending the partial likelihood score statistic for survival time

depending on a fixed rate x of degradation of HrQoL, under a generalization of

classical notations and assumptions, in order to take into account a rate x of degra-

dation of HrQoL, of counting process. We then derived a log-rank statistic which

permits to compare time to degradation of HrQoL between two kinds of treat-

ments when rate x of degradation of HrQoL is fixed. We proved that when rate x

of degradation of HrQoL is varying this log-rank statistic converges to a Gaussian

process. This permits to combine the set of global log-rank tests to an overall

global test for treatment effect on the longitudinal evolution of HrQoL. A simula-
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tion based resampling method is proposed to approximate the underlying p-value.

Simulation results show that this nonparametric test performs reasonably well un-

der practical situations in terms of type I error and power. The method is also

applied to a data set from a cancer study, with results consistent with previous

analysis.

Because for each individual we have a set of event times T (x), it is obvious

that these times are dependent. In fact, T (x) as a function of x is monotone in-

creasing. Therefore the corresponding set of log-rank tests are much related. It

would be of interest to investigate different ways to combine these test statistics,

as the proposed global test is of Kolmogorov-Smirnoff type. For example, instead

of supreme, we may consider an integral type analogous to the Cramer-von Mises

test.
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