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Abstract. Limited and incomplete information represent recurrent constraints in many
practical inference problems. Thus, categorical conclusions are unwarranted and assessing
the probative strength of scientific results in the light of uncertainty represents the regular
case in forensic science, forensic medicine and other disciplines. What is more, the
interpretation of scientific results in applied contexts requires the construction of arguments
in a balanced, logical, robust and transparent way. It is the duty of scientists to clarify the
foundations of such arguments and to handle the possibly multiple sources of uncertainty
in a rigorous and coherent way. There now is a widespread agreement among many
committed scientists that these requirements are appropriately conceptualized as reasoning
in conformity with the laws of probability theory and, derived from this framework, Bayes’
theorem, which is central to the understanding of inferential reasoning. This paper is
addressed to readers with knowledge of statistical concepts who seek a focused and general
overview on how elements of probability and Bayesian inferential statistics can be
meaningfully applied to help resolve questions of inference and decision-making at the
intersection between forensic science and the law, and support scientists in their interaction
with recipients of expert information and decision makers in the legal process.
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1. INTRODUCTION

Forensic science and forensic medicine rely on a body of scientific principles and
technical methods to help with issues in legal proceedings, such as criminal, civil
or administrative investigations. These disciplines seek to help demonstrate the
existence or past occurrence of events of legal interest, such as a crime. Forensic
science, in particular, assists the various participants in the justice system, such as
investigators, public prosecutors and decision-makers at large, in examining events
related to persons of interest and recovered traces. This may involve the analysis of
the nature of fluids and other materials, such as textile fibres, glass and paint
fragments, handwritings, as well as their classification in various categories.
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Forensic medicine, in turn, assists the judicial system by offering information in a
variety of domains, such as the cause of death and the estimation of the age of living
persons. More generally, forensic disciplines thus take a major interest in aspects
such as the investigation of crimes and the direct examination of living or death
persons (i.e., victims and suspects) and the vestiges of actions. In other words,
forensic disciplines assist in the reconstruction of past events of judicial relevance
that are unknown to us. Thus, the domain must deal with the fundamental notion of
uncertainty. The natural response to uncertainty is the search of new data. Naturally,
this involves the examination and comparative analysis of so-called ‘evidential
material’ (i.e., DNA traces, toxic substances, crime scene findings, data imaging,
etc.) followed by an assessment of the evidential strength of these scientific results
within the particular context of the relevant event under investigation.

However, throughout the history of forensic science, including more recent
periods, challenges arose from the discovery of cases of miscarriage of justice in
which scientific findings played a major role. These cases generate a continuing and
serious stream of debate about the status of some areas of forensic practice with
respect to scientific standards of reliability. At the same time, numerous courts
across legal systems have repeatedly emphasized the need for practicing scientists
to continually monitor the performance of their domain of specialization. Most
importantly, scientists need to scrutinize both the rationale underlying the various
areas of practice and the ways in which scientific results are evaluated and presented
in context. Today, many of the so-called traditional forensic identification practices
(i.e., questioned documents, dentition, X-ray images, etc.) are systematically
compared to purportedly better-founded and better-researched fields, in particular
forensic DNA analysis, to point out the lack of fundamental research and the
predominant reliance upon arbitrary expert opinions. Many legal and scientific
researchers and practitioners invoke this observation to call for a revision of
research agendas, towards a more systematic generation of data on agreed measurable
factors and the development of sound probabilistic methods for evidence evaluation
under uncertainty (Saks and Koehler, 2005).

This paper is structured as follows. Section 2 provides further arguments in
support of the view that forensic science should openly acknowledge the existence
of uncertainty as an inevitable feature of its area of practice and, arguably, that
expressing statements of certainty with respect to events of interest should be
avoided. Section 3 provides a more formal, but brief outline of the normative
probabilistic perspective to dealing with uncertainty while leaving more detailed
theoretical considerations to specialized literature on the topic. This discussion will
include a general presentation of the Bayesian approach for evaluating forensic
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results. Section 4 will rely on the notions introduced in the previous sections to
illustrate the proposed probabilistic methodology based on a hypothetical case
involving DNA for kinship analysis. Section 5 introduces probabilistic graphical
models, that is Bayesian networks, illustrated further in Section 6 through an
extended DNA relatedness case. Section 7 concludes the paper by underlying that
the Bayesian framework satisfies several desiderata for evidential assessment in
forensic science. The paper addresses a statistical readership that seeks a general
introduction to elements of forensic statistics.

2. THE CORE NEEDS IN FORENSIC SCIENCE: REASONING UNDER
UNCERTAINTY

The fundamental constraint in forensic science, in much the same way as in science
in general, is that available information is limited and incomplete. This means that
categorical conclusions about events of judicial interest are impossible. Reasoning
in the light of uncertainty thus represents the regular case. The inevitability of
uncertainty implies the necessity to determine the degree of belief that may be
assigned to a particular uncertain event or proposition, such as ‘Is the suspect the
donor of the recovered trace?’, ‘Is the toxic substance the cause of the patient’s
death?’, etc. It is in this context that inferential sciences, including statistics, can
offer a valuable and substantial approach. In particular, when the existence of
uncertainty is recognized as an inherent aspect of a given inference problem, and
a statistical approach is possible, then this approach represents a normative
reference in that it captures and indexes uncertainty based upon a precise and logical
line of reasoning (Lindley, 2014).

Scientific progress relies on past experience, but how exactly such experience
is to be used to inform future directions and decision-making represents a fundamental
challenge. On the basis of what one sees, combined with any existing knowledge,
one seeks to assess, if possible in a quantitative way, one’s uncertainty about a
particular event of interest, yet the reality is that this kind of reasoning for extending
knowledge provides only an incomplete basis for a conclusion. It follows naturally
from this that scientific discussions and public debates on science should focus on
uncertainty explicitly: that is, our perspective should seek to distinguish between
what is more likely and what is less likely, rather than attempt to endorse a concept
of certainty that cannot be warranted by the limited and imperfect evidence that
arises in practical proceedings. With that being said, the very relevant need of all
science is a way to deal quantitatively with what is commonly known as the
probabilities of causes, with the term cause being understood as an uncertain
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proposition (e.g., ‘The suspect is the source of the DNA trace found on the victim’).
The fundamental task thus consists of discriminating between events of interest, or
causes (e.g., in forensic medicine, the patient’s cause of death), in the light of
particularly acquired information (i.e., scientific findings) (Redmayne et al., 2011).

From a practical perspective, the ability to deal with reasoning under uncertainty
represents a core aspect of operational procedures that seek to qualify as rational.
By offering an explicit way for specifying and articulating uncertainties, they help
recipients of expert information introduce results of scientific examinations into a
coherent whole, along with multiple other items of evidence (Aitken et al., 2010).
The latter aspect reveals a further level of challenge. Daily inference tasks
encountered by investigators, scientists and other participants in legal proceedings
(judges, prosecutors and lawyers) are characterized not only by single and isolated
items of evidence, but multiple items associated with a possibly complicated
mutual dependency structure. It is therefore natural to enquire about logical
procedures that can deal with items of evidence that occur in combination and, in
particular, the way in which multiple items of evidence stand in relation to each
other. Such analyses reach further levels of complication essentially because they
need to be conducted in the light of intricate frameworks of circumstances, that is
situations involving many variables.

Probabilistic reasoning alone is not, however, an endpoint of forensic or
medical applications in the legal process. Clearly, at the end of the day, decisions
must be made. Once that uncertainty is recognized and formalized, the combination
of uncertainty with the ultimate decision represents the core feature of legal
proceedings. For example, a Court of Justice may have to decide if it finds a
defendant guilty of the offence for which he has been charged (Kaye, 1998). While
probabilistic reasoning under uncertainty can be considered a topic to be studied in
its own right, systematic research on how probability is coherently applied in the
wider context of rational decision-making under uncertainty, in particular with
regard to forensic science applications, is still a largely unexplored field. This
aspect is beyond the scope of this paper.

3. THE NORMATIVE APPROACH TO SCIENTIFIC INFERENCE: BAYES’
THEOREM

Probability constitutes a reference scheme for measuring uncertainty in any
scientific and human endeavour (Oaksford and Chater, 2007). For the purpose of
the current discussion, probability theory will be understood in its subjectivistic,
also known as epistemic or personalistic, interpretation (Biedermann, 2015). This
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view focuses on an individual’s personal beliefs about a given event. This view is
widely regarded as particularly useful, and by some even as the only meaningful
conceptualization of probability, regardless of its application in the field of forensic
science or everyday life in general. As noted in the previous sections, however,
besides a measure of uncertainty as given through probability theory, it is equally
necessary to re-assess probabilities given newly acquired data or, more generally
speaking, acquired information. For this purpose, the logic of Bayesian procedures
represents a primary choice (Howson and Urbach, 2005).

In essence, scientific reasoning can be considered as an instance of applying
the laws of probability theory, with Bayes’ theorem providing a solution to the
general problem known as induction. This type of inference seeks to evaluate which
hypothesis is most tenable in the light of what has been seen during examinations.
Unlike deduction, which goes from a given postulate to potential observations
(which can often be clearly articulated in a straightforward way), induction goes in
the reverse direction, which is more challenging, by starting from particular
findings to possibly multiple competing hypotheses. How exactly this reverse
thinking process ought to be operated in a logically sound way is at the heart of
Bayesian inference procedures.

To illustrate and state this more formally for a finite case setting, start by
considering a set of mutually exclusive and exhaustive hypotheses or causes
H1,...,Hn and a set of experimental (scientific) results or outcomes, say E (short for
‘evidence’). Further, let I denote the conditioning information. Bayes’ theorem then
says that the probability of a hypothesis of interest Hi, given E, is obtained as
follows:

Pr(Hi | E, I) =
Pr(E | Hi, I)Pr(Hi | I)

Pr(E | H1, I)Pr(H1 | I)+ ...+Pr(E | Hn, I)Pr(Hn | I)
. (1)

In the forensic context, Bayes’ theorem thus shows how the beliefs of any
person (e.g., a scientist, a judge) required to make an inference based on new data,
evolve. This leads one to posterior beliefs, that is a state of belief after that data has
been acquired. Such Bayes’ oriented reasoning is considered normative in the sense
that it prescribes a standard that, if followed, allows reasoners to avoid logical
fallacies. Stated otherwise, if one is committed to ensure a logically sound way of
reasoning, it is in one’s interest to conform to the Bayesian norm.

In legal contexts, it is common to consider the hypotheses of interest in pairs.
For example, H1 may denote the hypothesis representing the view of the prosecution,
while H2 denotes the hypothesis proposed by the defense. For such a situation, the



134 Taroni F., Biedermann A.

odds form of Bayes’ theorem is appropriate. In this formulation of the theorem, H2
denotes the complement of H1 so that Pr(H2 | I) = 1– Pr(H1 | I). Then, the odds O in
favor of H1 are Pr(H1 | I)/Pr(H2 | I), denoted O(H1 | I), and the odds in favor of H1
given E are denoted O(H1 | E,I). The ratio form of Bayes’ theorem then is:

O H E I
E H I

E H I
O H I1

1

2

1,
Pr ,

Pr ,
.( ) =

( )
( ) × ( ) (2)

The left-hand side of this equation, O(H1 | E,I), is the posterior odds in favor
of the prosecution hypothesis H1 after the scientific evidence E has been obtained.
The odds O(H1 | I), on the right-hand side, are the prior odds, that is before
considering the observation E. The ratio of the two conditional probabilities
Pr(E | H1,I)/Pr(E | H2,I) is known as the Bayes factor, or likelihood ratio, and
converts the prior odds to posterior odds. The Bayes factor can take values between
0 and  ∞  and plays a major role in current forensic science thinking. Values greater
than 1, for example, support the first proposition, here the prosecution’s hypothesis
(H1). Values smaller than 1 support the alternative hypothesis, here the one of the
defense (H2). Scientific results E for which the Bayes factor takes the value 1 are
said to be neutral. Such results do not allow one to discriminate between the two
competing hypotheses under consideration. Stated otherwise, the scientific
observation is equally likely under both hypotheses and, thus, does not allow one
to discriminate between the propositions of interest.

In principle, this scheme of reasoning operates analogously in other scientific
domains (Aitken and Taroni, 2004). There is no requirement for the hypotheses of
interest to relate to events of judicial relevance. In a medical context, for example,
H1 can express the event that a given patient is affected by a given disease 1 and the
alternative hypothesis H2 is that the patient is affected by another disease 2.
Similarly, one may be interested in the hypothesis that a victim deceased for reason
1 (H1) compared to an alternative reason 2 (H2). Let us exemplify this methodology
through a routine case scenario.

Table 1: DNA profiling results (genotype) for the child, the mother and the alleged father at
the two genetic markers THO1 and D3S1358. Numbers represent the alleles

characterizing the genotype of a given person.

Profiles
Evidence Locus Child Mother Alleged father

E1 THO1 6 – 6 6 – 7 6 – 9
E2 D3S1358 18 – 19 16 – 19 18 – 18
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4. A TYPICAL CASE IN FORENSIC SCIENCE: DNA PROFILING FOR
EXAMINING RELATEDNESS

DNA profiling analyses performed on genetic markers, most often short tandem
repeat (STR) markers (i.e. regions on DNA with polymorphisms that can be used
to help discriminate between individuals), represents the standard approach to
generate information that is relevant for studying various questions of relatedness.
For each analyzed marker, the genotype is noted. A genotype is given by two alleles,
one being inherited from the mother and the other from the father, although one
cannot observe which is which. Suppose the use of such profiling analyses in a
scenario involving a child, a mother and an alleged father. Propositions of interest
in such scenario generally are:
• H1: the alleged father is the true father of the child,

• H2: the alleged father is not the true father; an unknown person is the genetical
father of the child.

For shortness of notation, we leave aside background information I about the
case. Next, consider two items of evidence E1 and E2, representing DNA profiling
results for the child, mother and alleged father at two genetic markers (loci), THO1
and D3S1358, respectively, as shown in Table 1.

The likelihood ratio, generally referred to as paternity index in the context of
kinship analyses, for Ei is Pr(Ei | H1)/Pr(Ei | H2), with i = 1,2. To pursue this further,
let GCi,GMi and GAFi denote the genotypes of the child C, the mother M and the
alleged father AF, respectively, for evidence Ei. Let AMi and APi denote the maternal
and paternal alleles for evidence Ei. Let γi,j be the occurrence (i.e., relevant
population proportion) of allele j for evidence Ei.

For E1, the numerator of the likelihood ratio equals Pr(GC1 |GM1,GAF1,H1)= 1/
4. That is, for parents with genotypes 6 – 7 and 6 – 9, respectively, the probability
for their child to have genotype 6 – 6 is 1/4. The denominator equals Pr(GC1 |
GM1,GAF1,H2)= Pr(AM1 | GM1)×Pr(AP1 | H2)= Pr(AM1 = 6 | GM1 = 6 – 7) × Pr(AP1 =
6 | H2) = (1/2) × γ1,6. The likelihood ratio for the genetic marker THO1 is then 1/
(2γ1,6). For E2, the numerator of the likelihood ratio equals Pr(GC2 | GM2,GAF2,H1)=
1/2, that is for parents with genotypes 16 – 19 and 18 – 18, respectively, the
probability for their child to have genotype 18 – 19 is 1/2. The denominator equals
Pr(GC2 | GM2, GAF2, H2)= Pr(AM2 | GM2) × Pr(AP2 | H2)= Pr(AM2 = 19 | GM2 =
16 – 19) × Pr(AP2 = 18 | H2)=(1/2) ×  γ 2,18. The likelihood ratio for D3S1358
is then 1/γ2,18.

Under the assumption of independence between E1 and E2, the likelihood
ratio for the combination of evidence (E1,E2) is
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Pr(E1,E2 | H1)

Pr(E1,E2 | H2)
=

Pr(E1 | H1)

Pr(E1 | H2)
× Pr(E2 | H1)

Pr(E2 | H2)
=

1

2γ1,6
× 1

γ2,18
.

2 Note that, generally, forensic scientists use specific formulae for calculating the probability
of DNA profiles for two related individuals under an assumption of independence of genes.
Cases when the mother,  alleged father and alternative father all belong to the same sub-
population require that formulae incorporate additional factors such as the coancestry
coefficient, often denoted FST in scientific literature. To ease notation, this aspect is not
included in the development here.

3 For brevity, details of the derivation are left aside (Aitken and Taroni, 2004).
4 Notice that the default assumption Pr(H1)= Pr(H2)= 0.5 is unrealistic for many logical and

practical reasons. It is generally recommended to assign this initial probability on the basis
of the circumstances of the case at hand.

Assume further that γ1,6 = 0.219 and γ2,18 = 0.1557. Then 1/(2γ1,6γ2,18) = 14.7
�  15. The evidence of the two marker systems, that is the DNA profiling results,
is about 15 times more probable if the alleged father is the true father than if an
unknown man is. Verbally stated, this result can be said to provide moderate support
for the proposition that the alleged father is the true father2 rather that an unknown
and unrelated man.

In cases of alleged paternity, it is appropriate for a judge to consider the
posterior probability that the alleged father is the true father, which is the probability
that the main hypothesis H1 is true. This probability is known as the probability of
paternity and can be shown3 to be equal to:
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For illustration, suppose a case in which there is an alleged father and only one other
man (of unknown DNA profile) who could be the true father, and that one  holds
equal probabilities –  initially – for each of them being the true father4. Then Pr(H1)
= Pr(H2) = 0.5 and

Pr(H1 | E1) = 1/(1+2γ1,6) = 1/(1+0.438) = 0.695.
Next, extend the considerations to E2. Invoking Equation (3), the posterior

odds Pr(H1 | E1)/Pr(H2 | E1) in favour of H1, given E1, now become the new prior
odds so that the posterior probability for H1, given E1 and E2, is given by

Pr ,
Pr

Pr

Pr

Pr
H E E

H E

H E

E H

E
1 1 2

2 1

1 1

2 2

2

1( ) = +
( )
( ) ×

( )
HH1

1

1
0 305

0 695

0 155 2

1 2

( )












= + ×



−

.

.

. /

/



=

−1

0 936. .



Uncertainty in forensic science: Experts, probabilities and Bayes’ theorem 137

This result assumes again independence between E1 and E2. The probability
that the alleged father was the true father, the probability of paternity, was initially
0.5. After presentation of the THO1 evidence (E1) it became 0.695. After the
presentation of the D3S1358 evidence (E2) it became 0.936. The effect on the
posterior probability of altering the prior probability can be determined from
equations (3) and (4). Examples of results are given in Table 2.

Table 2: Posterior probabilities of paternity for various prior probabilities for evidence for
alleged father E1 = 6– 9, E2 = 18–18.

Pr(H1) 0.5 0.25 0.1 0.01

Pr(H1 | E1) 0.695 0.432 0.202 0.023

Pr(H1 | E1,E2) 0.936 0.831 0.620 0.129

This example of a paternity scenario portrays the general idea of how to
reason coherently under situations of uncertainty. Many real case situations,
however, can be much harder to solve, with no simple equations being available.
This may be so because more information is available and so the scientist needs
to know how the various components of this information interact with and relate
to each other. But there may also be more uncertainty due to a lack of information.
To help apply probability theory in such contexts, in particular assessing scientific
findings and quantifying the probability of hypotheses of interest, graphical
frameworks have been developed. So-called probabilistic graphical models, such
as Bayesian networks (Bayes nets or BNs, for short).

The level additional complication that may readily be dealt with by Bayesian
networks is best illustrated through an example. Suppose that there are two
individuals (offspring, denoted here child c1 and child c2, respectively) who share
the same two parents (mother m1 and father f). A third individual, say c3, known
to have a mother m2 different from m1, is interested in examining the degree of
relatedness with respect to c1 and c2 (e.g., half-sibship versus unrelated). Thus,
f is considered as a putative father of c3. A particular complication of the scenario
consists in the fact that f is deceased and unavailable for DNA profiling analyses.
Such a questioned kinship case looks very challenging at first sight, but it can be
studied through probabilistic graphical models which are ideally suited to
manage the multiple items information. To point this out, we first introduce
Bayesian networks in Section 5, and then apply them to this case in Section 6.
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5. A PROBABILISTIC GRAPHICAL ENVIRONMENT: BAYESIAN NET-
WORKS

Bayesian networks combine elements from graph and probability theory. They
pictorially represent the assumed dependencies and influences among the variables
considered to be relevant for a particular inference problem. Variables of interest are
represented by nodes while arcs are used to express assumed dependencies between
variables. As a main feature, Bayesian networks allow their users to coordinate
probabilistic inferences in different directions, that is, very generally speaking,
from causes to effects and in the reverse direction, from effects to causes. In the
context, this is also called bidirectional inference. This means that one can reason
in the direction of a network’s arc, which leads to an evaluation of the probability
of a particular observational variable given the truth of certain conditioning
propositions of interest. On the other hand, one can reason against the direction of
an arc, which amounts to inductive inference about propositions of interest, based
on particular evidence. These inferential properties find widespread interest in
many areas where the study of deduction and induction through probability plays
an important role. Typical examples include medical diagnosis but also forensic
science (Taroni et al., 2014).

In a Bayesian network, nodes and edges are combined in order to form a
directed acyclic graph (or DAG). To express the strength of the relationships
between the variables, probability distributions are associated with each node. For
discrete variables, this means that, for example, a variable B which has entering arcs
from parents A1,...,An, will have a conditional node probability table Pr(B | A1,...,An).
When a variable has no parents, a table containing unconditional probabilities is
assigned. For example, probabilities Pr(A) will be assigned for a variable A that has
no entering arcs from other nodes. In a Bayesian network with variables A1,...,An,
the joint probability distribution Pr(A1,...,An) is given by the product of all specified
conditional probabilities:

Pr , , Pr |= …( ) = ( )( )∏A A A par A
n

i
i i1 (5)

where par(Ai) represents the set of parental variables of Ai. Equation (5) is called
the chain rule for Bayesian networks. It formally defines the meaning of a Bayesian
network: the representation of the joint probability distribution for all the variables.
Consider this rule in each of the three cases of basic sequential connections that can
be made up with Bayesian networks (see Figure 1). For a path from A to C via B,
as shown in Figure 1(i), Pr(A,B,C)= Pr(A)Pr(B | A)Pr(C | A,B) can be reduced to
Pr(A,B,C) = Pr(A)Pr(B | A)Pr(C | B).
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For a diverging connection, the joint probability can be written as Pr(C,A,B)=
Pr(C)Pr(A|C)Pr(B|C), whereas in a converging connection it would be
Pr(A,B,C)=Pr(A)Pr(B)Pr(C | A,B).

For building Bayesian networks, the analyst must keep in mind that the
purpose is to represent features of a real-world problem. That is, through the use of
a Bayesian network, one can graphically and numerically express one’s understanding
and perception of a real world system. To illustrate this, consider the network
fragments shown in Figure 1, representing basic building blocs for encoding
dependence and (conditional) independence assumptions that we may have with
respect to particular features of an inference problem. Start by considering serial
and diverging connections. In these types of connections, a path is said to be
‘blocked’ if the middle variable is instantiated5. To make this explicit, consider a
serial connection where A represents the proposition ‘suspect is the offender’, B the
proposition ‘the blood stain found on the crime scene comes from the suspect’,
andC ‘the suspect’s blood sample and the blood stain from the crime scene share
the same DNA profile’. In such a network fragment, the proposition A is relevant
for B and so is B for C. However, given B, the cause of the presence of blood could
be different from A. Next, consider a diverging connection. This type of connection
is appropriate when one judges that knowledge about an event A is relevant for
another event B and that knowledge about a third event C, which conditions both
A and B, separates A from B. This holds, for example, in a case where C represents
the proposition ‘the suspect has assaulted the victim’, A ‘the bloodstain on the
suspect’s clothes comes from the victim’ and B ‘the bloodstain on the victim comes
from the suspect’. In converging connections, a path is blocked for the flow of
information as long as the intermediate variable, or one of its descendants, has not
received evidence. For example, in a medical context, let A denote the proposition

Figure 1: Serial (i), diverging (ii) and converging (iii) connections in Bayesian networks.
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5 A variable is called instantiated if its state is changed from ‘unknown’ to ‘known’.
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‘the patient has disease A’ and B ‘the patient has disease B’. Then, knowledge that
one of these events occurred would not provide information about the occurrence
of the other. However, if it becomes known that the intermediate variable C holds
(e.g., the proposition ‘the patient shows scientific evidence C, such as fever’), then
A and B become related.

Figure 2 illustrates the principal modes of probabilistic reasoning in Bayesian
networks. For the ease of argument, interpret the network as a representation of
relationships of cause and effect. Thus, let us say that causes ‘produce’ the effects,
that is, knowing that a cause occurred, it can be foreseen that the effect will occur
or might probably occur, too. This kind of reasoning is also known as prevision. For
example, if a person of interest (e.g., a suspect) is the source of a crime stain
(represented, for instance, in terms of a variable S), then we might expect that
laboratory analyses find corresponding DNA profiles between reference material
from the suspect and the crime stain. Such a scientific result can be represented, for
example, in terms of a second variable E. In this network, with structure S → E, if
S is known, then the probability of the child variable E will be given by the
probability Pr(E | S) as specified in the conditional node table of E. Note that,
usually, this probability is taken to be considerably larger than the probability for

a correspondence if the suspect were not the source of the crime stain: Pr(E | S ) <
Pr(E | S).

Note, however, that the effect does not ‘produce’ the cause. Instead, knowing
that the effect occurred, one may infer that the cause probably occurred. This is a
line of reasoning against the causal direction (i.e., a network’s arc), referred to as
‘diagnostic’. For example, on the basis of analytical results that reveal the same
DNA profile for the stain and the reference material from the suspect (represented
by variable E), one’s belief in the proposition that the suspect is the source of the

Figure 2: Different modes reasoning in Bayesian networks (prevision and diagnosis).
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stain (variable S) should increase. This is so whenever Pr(E | S )< Pr(E | S), that
is the finding of corresponding DNA profiles is more probable under the proposition
S (i.e., the suspect is the source of the crime stain) rather than under the alternative

proposition S  (i.e., an unknown person is the source of the crime stain). In a
medical context, an example of using the network structure S → E could be
analyses (i.e., diagnostic testing) showing that the patient’s blood contains a certain
quantity of a given target substance (represented by variable E), which is used as
a basis to revise one’s belief in the proposition that the patient has a particular
disease (conditioning variable S). Within Bayesian networks, such a revision of
belief is operated according to Bayes’ theorem (Equation (1)). Note that such
computations are possible over much larger network structures that considered in
the general presentation given in this Section. An example of an extended network
is pursued in Section 6.

6. BAYESIAN NETWORKS FOR KINSHIP ANALYSES USING DNA
PROFILING RESULTS

Consider again the scenario introduced at the end of Section 4. There are two
individuals child c1 and child c2 who share the same two parents (mother m1 and
father f). A third individual, child c3, known to have a mother m2 different from
mother m1, seeks to investigate the degree of relatedness with respect to individuals
c1 and c2 (i.e., half-sibship versus unrelated). Father f is considered as a putative
father of c3, but, unfortunately, f is deceased and unavailable for DNA profiling
analyses. To approach this case through a Bayesian network, start by considering
basic sub-models to deal with genetical characteristics, as shown in Figures 3 (i) and
(ii).

cpg mpg mmg

mgtcmg

(i) (ii)

cgt

cmg

Figure 3: Bayesian network fragments, from methodology described in Dawid et al. (2002),
representing (i) a child’s genotype, cgt, with cpg and cmg denoting, respectively, the
child’s paternally and maternally inherited genes, and (ii), a child’s maternal gene,
cmg, reconstructed as a function of the mother’s paternal and maternal genes, mpg
and mmg, respectively. The states of gene nodes represent the different forms (i.e.,
alleles) that a genetic marker can assume whereas the states of the genotype nodes

regroup pairs of alleles.
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For sake of illustration, consider the network fragment (ii) displayed in Figure
3. Let us suppose that the node mpg (short for ‘mother paternal gene’) covers the
states 6, 7 and x, representing the number of short tandem repeats (STR) at the locus
THO1, with x summarising all alleles other than 6 and 7. The unconditional
probabilities required for the various states of the node mpg are assigned on the basis
of the relevant allelic population proportions, obtained from databases or scientific
literature. The same definition applies for the node mmg (short for ‘mother maternal
gene’). Next, for each marker included in the analysis of our complex scenario, the
genotype is recorded. The latter consists of two genes, one being inherited from the
mother and the other from the father (although one cannot observe which is which).
The Bayesian network fragment in Figure 3 (ii) captures an individual’s genotype
for a given marker and the transmission of alleles to a descendant (child).

Based on these considerations, the network in Figure 4 can be constructed to
describe the scenario under investigation.

This network can accommodate DNA profiling results for a single marker.
The structure of this model is the result of a logical combination of submodels that
themselves may be a composition of model fragments. Examples of submodels are
shown in Figure 4 using rounded boxes with dotted lines (other submodels may be
chosen). The submodel (a) represents the genotypes of the individuals c1 and c2,
conditioned on the genotypes of the undisputed parents m1 and f. This submodel
is itself a composition of the repeatedly used network fragment described in Figure
3 (i). The same network fragment is invoked to implement the genotype of the

(a)

m1mg

c1mg

c1gt

m1pg

m1gt

c1pg c2mg c2pg

c2gt c3gt

c3pg

tfmg tfpg

c3mg

m2gt

m2pgm2mg

(b)

(c)

fmg fpg

fgt

tf=f?

Figure 4: Bayesian network for evaluating DNA profiling results in a case of questioned
kinship. Nodes c, f, m (in the first place) and t f denote, respectively, child, father,

mother and true father. Nodes with names ‘...mg’ and ‘...pg’ denote, respectively, an
individual’s maternally and paternally inherited genes. Nodes with names ‘...gt’

represent an individual’s genotype. The node t f = f? is binary with values ‘yes’ and
‘no’ in answer to the question whether the undisputed father f of the children c1 and

c2 is the true father of the child c3.
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individuals c3 (submodel (b)) and m2 (submodel (c)). A subtle constructional detail
concerns the connection between the two submodels (a) and (b). As there is
uncertainty about whether f is the true father of c3, the paternal gene of c3, c3pg,
is not directly conditioned on f’s parental genes (that is, nodes fmg and f pg). Such
uncertainty is accounted for through a distinct node t f = f? that regulates the degree
to which f’s allelic configuration is allowed to determine c’s true father’s parental
genes, represented here by nodes t fmg and t f pg.

The above considerations clearly illustrate that Bayesian network models are
highly versatile and can deal with a variety of aspects that affect the coherent
evaluation of scientific results. This includes partial evidence and additional
complications such as genetic mutation (Dawid et al., 2002). This explains why the
use of Bayesian networks for studying the assessment of the weight of scientific
evidence in forensic science is a lively area of research, in particular for DNA
profiling results (Biedermann and Taroni, 2012).

7. CONCLUSIONS

We have emphasized in this paper that limited and incomplete information
represent recurrent constraints in many practical inference problems. Forensic
science and legal medicine provide a strong case for this because of the paucity and
limitations of the trace material, that is potential evidence, arising in real cases.
Thus, the interpretation of scientific results in context must deal with uncertainty
and requires the construction of arguments in a balanced, logical, robust and
transparent way (Jackson, 2000). Inferential disciplines, in particular statistics,
offer sound frameworks – in particular the Bayesian programme – that provide
scientists with a proper approach to this challenge. Although the practical
implementation of this perspective may not be straightforward in some instances,
there now exist sophisticated frameworks, such as Bayesian networks, available
also in both commercially and academically distributed software environments.
These support the transition from theoretical analyses to operational applications.
The advent of such computational support for implementing probabilistic reasoning
in practice has opened many new areas of fundamental research in forensic science.
Today, scientists have never been in a better position to invoke the logical
framework of probabilistic reasoning when they are required to explain in a clear
and explicit way how they have proceeded in solving intricate inferential problems
and arrived at their conclusions. This represents an important argument in favour
of the requirement of disclosing the rationale behind the work of forensic experts.
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