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Abstract. Limited and incomplete information represent recurrent constraints in many
practical inferenceproblems. Thus, categorical conclusionsareunwar ranted and assessing
the probative strength of scientific resultsin the light of uncertainty representstheregular
case in forensic science, forensic medicine and other disciplines. What is more, the
inter pretation of scientific resultsinapplied contextsrequirestheconstruction of arguments
in abalanced, logical, robust and transparent way. It isthe duty of scientiststo clarify the
foundations of such arguments and to handl e the possibly multiple sources of uncertainty
in a rigorous and coherent way. There now is a widespread agreement among many
committed sci entiststhat theserequirementsar eappropriately conceptualized asreasoning
in conformity with the laws of probability theory and, derived fromthisframework, Bayes
theorem, which is central to the understanding of inferential reasoning. This paper is
addressed to reader swith knowl edge of statistical conceptswho seek afocused and general
overview on how elements of probability and Bayesian inferential statistics can be
meaningfully applied to help resolve questions of inference and decision-making at the
i nter section between forensi ¢ scienceand thelaw, and support scientistsintheir interaction
with recipients of expert information and decision makersin the legal process.
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1. INTRODUCTION

Forensic science and forensic medicine rely on abody of scientific principlesand
technical methods to help with issuesin legal proceedings, such as criminal, civil
or administrative investigations. These disciplines seek to help demonstrate the
existence or past occurrence of events of legal interest, such as a crime. Forensic
science, in particular, assists the various participantsin the justice system, such as
investigators, public prosecutorsand decision-makersat large, in examining events
related to personsof interest and recovered traces. Thismay involvetheanalysisof
the nature of fluids and other materias, such as textile fibres, glass and paint
fragments, handwritings, as well as their classification in various categories.

1 Corresponding author: Franco.Taroni @unil.ch
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Forensic medicine, inturn, assiststhejudicia system by offering informationin a
variety of domains, such asthe cause of death and the estimation of theageof living
persons. More generally, forensic disciplines thus take a major interest in aspects
such as the investigation of crimes and the direct examination of living or death
persons (i.e., victims and suspects) and the vestiges of actions. In other words,
forensic disciplines assist in the reconstruction of past events of judicial relevance
that are unknown to us. Thus, the domain must deal with the fundamental notion of
uncertainty. Thenatural responseto uncertainty isthesearch of new data. Naturally,
this involves the examination and comparative analysis of so-called ‘evidential
material’ (i.e., DNA traces, toxic substances, crime scene findings, dataimaging,
etc.) followed by an assessment of the evidentia strength of these scientific results
within the particular context of the relevant event under investigation.

However, throughout the history of forensic science, including more recent
periods, challenges arose from the discovery of cases of miscarriage of justicein
which scientificfindingsplayedamajor role. These casesgenerate acontinuing and
serious stream of debate about the status of some areas of forensic practice with
respect to scientific standards of reliability. At the same time, numerous courts
acrosslegal systems have repeatedly emphasized the need for practicing scientists
to continually monitor the performance of their domain of specialization. Most
importantly, scientists need to scrutinize both the rationale underlying the various
areasof practiceandthewaysinwhich scientificresultsareeval uated and presented
incontext. Today, many of the so-called traditional forensicidentification practices
(i.e., questioned documents, dentition, X-ray images, €tc.) are systematically
compared to purportedly better-founded and better-researched fields, in particular
forensic DNA analysis, to point out the lack of fundamenta research and the
predominant reliance upon arbitrary expert opinions. Many legal and scientific
researchers and practitioners invoke this observation to call for a revision of
researchagendas, towardsamoresystemati c generation of dataon agreed measurable
factorsandthedevel opment of sound probabilistic methodsfor evidenceeval uation
under uncertainty (Saks and Koehler, 2005).

This paper is structured as follows. Section 2 provides further argumentsin
support of the view that forensi ¢ science should openly acknowledge the existence
of uncertainty as an inevitable feature of its area of practice and, arguably, that
expressing statements of certainty with respect to events of interest should be
avoided. Section 3 provides a more formal, but brief outline of the normative
probabilistic perspective to dealing with uncertainty while leaving more detailed
theoretical considerationsto specialized literature onthetopic. Thisdiscussionwill
include a general presentation of the Bayesian approach for evaluating forensic



Uncertainty in forensic science: Experts, probabilities and Bayes' theorem 131

results. Section 4 will rely on the notions introduced in the previous sections to
illustrate the proposed probabilistic methodology based on a hypothetical case
involving DNA for kinship analysis. Section 5 introduces probabilistic graphical
models, that is Bayesian networks, illustrated further in Section 6 through an
extended DNA relatedness case. Section 7 concludes the paper by underlying that
the Bayesian framework satisfies several desiderata for evidential assessment in
forensic science. The paper addresses a statistical readership that seeks a general
introduction to elements of forensic statistics.

2. THE CORE NEEDSIN FORENSIC SCIENCE: REASONING UNDER
UNCERTAINTY

Thefundamental constraint inforensic science, in much the sameway asin science
in general, isthat availableinformation islimited and incomplete. This meansthat
categorical conclusionsabout eventsof judicial interest areimpossible. Reasoning
in the light of uncertainty thus represents the regular case. The inevitability of
uncertainty implies the necessity to determine the degree of belief that may be
assigned to a particular uncertain event or proposition, such as ‘Is the suspect the
donor of the recovered trace?, ‘Is the toxic substance the cause of the patient’s
death?, etc. It isin this context that inferential sciences, including statistics, can
offer a valuable and substantial approach. In particular, when the existence of
uncertainty is recognized as an inherent aspect of a given inference problem, and
a statistical approach is possible, then this approach represents a normative
referenceinthat it capturesandindexesuncertainty based uponapreciseandlogical
line of reasoning (Lindley, 2014).

Scientific progressrelieson past experience, but how exactly such experience
istobeusedtoinformfuturedirectionsand decision-making representsafundamental
challenge. On the basis of what one sees, combined with any existing knowledge,
one seeks to assess, if possible in a quantitative way, on€'s uncertainty about a
particular event of interest, yet thereality isthat thiskind of reasoning for extending
knowledge providesonly anincomplete basisfor aconclusion. It followsnaturally
from thisthat scientific discussions and public debates on science should focuson
uncertainty explicitly: that is, our perspective should seek to distinguish between
what ismorelikely and what islesslikely, rather than attempt to endorse aconcept
of certainty that cannot be warranted by the limited and imperfect evidence that
arisesin practical proceedings. With that being said, the very relevant need of all
science is a way to deal quantitatively with what is commonly known as the
probabilities of causes, with the term cause being understood as an uncertain
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proposition (e.g., ‘ Thesuspect isthe sourceof the DNA tracefound onthevictim’).
Thefundamental task thus consists of discriminating between events of interest, or
causes (e.g., in forensic medicine, the patient’s cause of death), in the light of
particularly acquiredinformation (i.e., scientificfindings) (Redmayneetal., 2011).

Fromapractical perspective, theability todeal with reasoning under uncertainty
represents a core aspect of operational procedures that seek to qualify asrational.
By offering an explicit way for specifying and articul ating uncertainties, they help
recipients of expert information introduce results of scientific examinationsinto a
coherent whole, along with multiple other items of evidence (Aitken et al., 2010).
The latter aspect reveals a further level of challenge. Daily inference tasks
encountered by investigators, scientistsand other participantsinlegal proceedings
(judges, prosecutors and lawyers) are characterized not only by single and isolated
items of evidence, but multiple items associated with a possibly complicated
mutual dependency structure. It is therefore natural to enquire about logical
procedures that can deal with items of evidence that occur in combination and, in
particular, the way in which multiple items of evidence stand in relation to each
other. Such analyses reach further levels of complication essentially because they
need to be conducted in the light of intricate frameworks of circumstances, that is
situations involving many variables.

Probabilistic reasoning alone is not, however, an endpoint of forensic or
medical applicationsin the legal process. Clearly, at the end of the day, decisions
must bemade. Oncethat uncertainty isrecognized and formalized, thecombination
of uncertainty with the ultimate decision represents the core feature of legal
proceedings. For example, a Court of Justice may have to decide if it finds a
defendant guilty of the offencefor which he hasbeen charged (Kaye, 1998). While
probabilistic reasoning under uncertainty can be considered atopictobestudiedin
its own right, systematic research on how probability is coherently applied in the
wider context of rational decision-making under uncertainty, in particular with
regard to forensic science applications, is still a largely unexplored field. This
aspect is beyond the scope of this paper.

3. THE NORMATIVE APPROACH TO SCIENTIFIC INFERENCE: BAYES
THEOREM

Probability constitutes a reference scheme for measuring uncertainty in any
scientific and human endeavour (Oaksford and Chater, 2007). For the purpose of
the current discussion, probability theory will be understood in its subjectivistic,
a so known as epistemic or personalistic, interpretation (Biedermann, 2015). This
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view focuses on an individual’s personal beliefs about a given event. Thisview is
widely regarded as particularly useful, and by some even as the only meaningful
conceptualization of probability, regardlessof itsapplicationinthefield of forensic
science or everyday life in general. As noted in the previous sections, however,
besides a measure of uncertainty as given through probability theory, it isequally
necessary to re-assess probabilities given newly acquired data or, more generally
speaking, acquired information. For this purpose, thelogic of Bayesian procedures
represents a primary choice (Howson and Urbach, 2005).

In essence, scientific reasoning can be considered as an instance of applying
the laws of probability theory, with Bayes theorem providing a solution to the
genera problem knownasinduction. Thistypeof inference seeksto evaluatewhich
hypothesisis most tenablein the light of what has been seen during examinations.
Unlike deduction, which goes from a given postulate to potential observations
(which can often be clearly articulated in astraightforward way), induction goesin
the reverse direction, which is more challenging, by starting from particular
findings to possibly multiple competing hypotheses. How exactly this reverse
thinking process ought to be operated in alogically sound way is at the heart of
Bayesian inference procedures.

To illustrate and state this more formally for a finite case setting, start by
considering a set of mutually exclusive and exhaustive hypotheses or causes
H,....,.H and aset of experimental (scientific) results or outcomes, say E (short for
‘evidence’). Further, let | denotetheconditioninginformation. Bayes theoremthen
says that the probability of a hypothesis of interest H,, given E, is obtained as
follows:

Pr(E | H;,I)Pr(H; | I)
Pr(E | Hy,1)Pr(Hy |I) + ...+ Pr(E | H,, ) Pr(H, | 1)’

Pr(H; | E,I) = ey

In the forensic context, Bayes' theorem thus shows how the beliefs of any
person (e.g., ascientist, ajudge) required to make an inference based on new data,
evolve. Thisleadsoneto posterior beliefs, that isa state of belief after that datahas
beenacquired. Such Bayes' oriented reasoningisconsidered nor mativeinthesense
that it prescribes a standard that, if followed, allows reasoners to avoid logical
fallacies. Stated otherwise, if oneiscommitted to ensure alogically sound way of
reasoning, it isin one’sinterest to conform to the Bayesian norm.

Inlegal contexts, it iscommon to consider the hypotheses of interest in pairs.
For example, H, may denotethehypothesi srepresenting theview of theprosecution,
while H, denotes the hypothesis proposed by the defense. For such asituation, the
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oddsform of Bayes' theoremisappropriate. Inthisformulation of thetheorem, H,
denotes the complement of H, so that Pr(H,, | 1) = 1-Pr(H, | 1). Then, theodds O in
favor of H are Pr(H, | 1)/Pr(H, | 1), denoted O(H, | 1), and the oddsin favor of H,
given E are denoted O(H, | E,I). Theratio form of Bayes' theorem then is:

Pr(E|H1,I)
Pr(E[H,,I

Hz,

o(H,|E1)= xO(H,[1)- @

The left-hand side of thisequation, O(H, | E,I), isthe posterior odds in favor
of the prosecution hypothesis H, after the scientific evidence E has been obtained.
The odds O(H, | I), on the right-hand side, are the prior odds, that is before
considering the observation E. The ratio of the two conditional probabilities
Pr(EI H,1)/Pr(E| H,,I) isknown as the Bayes factor, or likelihood ratio, and
convertstheprior oddsto posterior odds. The Bayesfactor cantakeval uesbetween
Oand c and playsamajor rolein current forensic sciencethinking. Valuesgreater
than 1, for exampl e, support thefirst proposition, herethe prosecution’shypothesis
(H,). Vaues smaller than 1 support the alternative hypothesis, here the one of the
defense (H,). Scientific results E for which the Bayes factor takes the value 1 are
said to be neutral. Such results do not allow one to discriminate between the two
competing hypotheses under consideration. Stated otherwise, the scientific
observation isequally likely under both hypotheses and, thus, does not allow one
to discriminate between the propositions of interest.

In principle, thisscheme of reasoning operatesanalogously in other scientific
domains (Aitken and Taroni, 2004). Thereisno requirement for the hypotheses of
interest to relate to events of judicial relevance. Inamedical context, for example,
H, can expressthe event that agiven patient isaffected by agiven disease 1 and the
aternative hypothesis H, is that the patient is affected by another disease 2.
Similarly, onemay beinterested in the hypothesisthat avictim deceased for reason
1(H,) comparedtoanalternativereason 2 (H,). L et usexemplify thismethodol ogy
through a routine case scenario.

Table 1: DNA profiling results (genotype) for the child, the mother and the alleged father at
the two genetic markers THO1 and D3S1358. Number srepresent the alleles
characterizing the genotype of a given person.

Profiles
Evidence Locus Child M other Alleged father
E, THO1 6-6 6-7 6-9
E, D3S1358 18-19 16-19 18-18
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4. ATYPICAL CASE IN FORENSIC SCIENCE: DNA PROFILING FOR
EXAMINING RELATEDNESS

DNA profiling analyses performed on genetic markers, most often short tandem
repeat (STR) markers (i.e. regions on DNA with polymorphisms that can be used
to help discriminate between individuals), represents the standard approach to
generateinformation that isrelevant for studying various questions of relatedness.
For each analyzed marker, thegenotypeisnoted. A genotypeisgivenby twoalleles,
one being inherited from the mother and the other from the father, although one
cannot observe which is which. Suppose the use of such profiling analysesin a
scenario involving achild, amother and an alleged father. Propositions of interest
in such scenario generally are:

» H,: thealleged father isthe true father of the child,

» H,: thealleged father is not the true father; an unknown person isthe genetical

father of the child.

For shortness of notation, weleave aside background information | about the
case. Next, consider two items of evidence E, and E,, representing DNA profiling
resultsfor the child, mother and alleged father at two genetic markers(loci), THO1
and D3S1358, respectively, as shown in Table 1.

Thelikelihood ratio, generally referred to as paternity index in the context of
kinship analyses, for E;isPr(E; | H,)/Pr(E, | H,), withi = 1,2. To pursue thisfurther,
let G;,G,, and G, denote the genotypes of the child C, the mother M and the
allegedfather AF, respectively, for evidenceE;. Let A, and A, denotethe maternal
and paternal alleles for evidence E;. Let y; be the occurrence (i.e., relevant
population proportion) of allelej for evidence E,.

For E,, thenumerator of thelikelihood ratio equalsPr(G, [G,,,,Gpg1,.H,)= 1
4. That is, for parents with genotypes 6 — 7 and 6 — 9, respectively, the probability
for their child to have genotype 6 — 6 is 1/4. The denominator equals Pr(G, |
Gy1:GarrH2)= Pr(Ayy | Gy *Pr(Ap, [ Ho)= Pr(Ay, = 6] Gy =6-7) x Pr(Ay, =
6| H,) = (1/2) xy, ;. Thelikelihood ratio for the genetic marker THOL is then I/
(2y, ¢). For E,, thenumerator of thelikelihood ratio equalsPr(G, | Gy, Gpr,,H1)=
1/2, that is for parents with genotypes 16 — 19 and 18 — 18, respectively, the
probability for their child to have genotype 18 —19is1/2. Thedenominator equals
Pr(Ge, | Gypr Gapor Ho)= Pr(A,| Gy,) x Pr(As, | Hy))= Pr(A,,= 191 G,,,=
16 - 19) x Pr(Ap, = 181 H,)=(1/2) x y ,4. Thelikelihood ratio for D3S1358
isthen 1/y, 1q.

Under the assumption of independence between E; and E,, the likelihood
ratio for the combination of evidence (E,E,) is
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PI‘(El,EQ‘Hl) _PI'(El ‘H]) PI'(E2 |H1) 1 1

_ = x .
Pr(E|,E;, |Hy) Pr(Ey |Hy) Pr(Ex|Ha) 216  7%is

Assumefurther that y, ;= 0.219 andy, ;4= 0.1557. Then 1/(2y, ¢V, 1) = 14.7
= 15. The evidence of the two marker systems, that isthe DNA profiling results,
is about 15 times more probable if the alleged father is the true father than if an
unknownmanis. Verbally stated, thisresult can be said to provide moderate support
for the proposition that the alleged father isthe true father? rather that an unknown
and unrelated man.

In cases of alleged paternity, it is appropriate for a judge to consider the
posterior probahility that theal leged father isthetruefather, whichistheprobability
that the main hypothesisH, istrue. This probability isknown asthe probability of
paternity and can be shown?®to be equal to:

Pr(H,|E )= +Pr(El|H2)xPr(H2)§1
() % rr(En) P(H)g ®3)

For illustration, supposeacaseinwhichthereisan alleged father and only oneother
man (of unknown DNA profile) who could be the true father, and that one holds
equal probabilities— initially —for each of them being thetruefather®. Then Pr(H,)
=Pr(H,) = 0.5 and

Pr(H, | E)) = /(1+2y, o) = 1/(1+0.438) = 0.695.
Next, extend the considerations to E,. Invoking Equation (3), the posterior
oddsPr(H, | E,)/Pr(H,| E,) infavour of H,, given E,, now become the new prior
odds so that the posterior probability for H,, given E, and E,, is given by

= .,.Iz)f(|‘|z|El)><Pr(EZ“_'Z)H_1
Pr(H,|E,.E,) gl Pr(H,JE) F’f(Ez|H1)E

0 0305 0.155/20°
= + X
H* o6 12 B

=0.936.

2 Notethat, generally, forensic scientists use specific formulae for calculating the probability
of DNA profilesfor two related individuals under an assumption of independence of genes.
Cases when the mother, aleged father and aternative father all belong to the same sub-
population require that formulae incorporate additional factors such as the coancestry
coefficient, often denoted Fg; in scientific literature. To ease notation, this aspect is not
included in the devel opment here.

3 For brevity, details of the derivation are |eft aside (Aitken and Taroni, 2004).

4 Noticethat thedefault assumption Pr(H,)= Pr(H,)= 0.5isunrealistic for many logical and
practical reasons. It isgenerally recommended to assign thisinitial probability onthebasis
of the circumstances of the case at hand.
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This result assumes again independence between E, and E,,. The probability
that the alleged father was the true father, the probability of paternity, wasinitially
0.5. After presentation of the THOL evidence (E,) it became 0.695. After the
presentation of the D3S1358 evidence (E,) it became 0.936. The effect on the
posterior probability of altering the prior probability can be determined from
equations (3) and (4). Examples of results are given in Table 2.

Table 2: Posterior probabilities of paternity for variousprior probabilitiesfor evidence for
alleged father E; = 6-9, E,=18-18.

Pr(H,) 05 0.25 0.1 0.01
Pr(H, |E,) 0.695 0.432 0.202 0.023
Pr(H, | E,,E,) 0.936 0.831 0.620 0.129

This example of a paternity scenario portrays the general idea of how to
reason coherently under situations of uncertainty. Many real case situations,
however, can be much harder to solve, with no simple equations being available.
This may be so because more information is available and so the scientist needs
to know how the various components of this information interact with and relate
to each other. But there may al so be more uncertainty dueto alack of information.
To help apply probability theory in such contexts, in particular assessing scientific
findings and quantifying the probability of hypotheses of interest, graphical
frameworks have been devel oped. So-called probabilistic graphical models, such
as Bayesian networks (Bayes nets or BNs, for short).

Thelevel additional complication that may readily be dealt with by Bayesian
networks is best illustrated through an example. Suppose that there are two
individuals (offspring, denoted here child c1 and child ¢2, respectively) who share
the same two parents (mother m1 and father f). A third individual, say 3, known
to have a mother m2 different from m1, is interested in examining the degree of
relatedness with respect to c1 and c2 (e.g., half-sibship versus unrelated). Thus,
f isconsidered as a putative father of ¢3. A particular complication of the scenario
consistsin thefact that f is deceased and unavailable for DNA profiling analyses.
Such a questioned kinship case looks very challenging at first sight, but it can be
studied through probabilistic graphical models which are ideally suited to
manage the multiple items information. To point this out, we first introduce
Bayesian networks in Section 5, and then apply them to this case in Section 6.
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5. A PROBABILISTIC GRAPHICAL ENVIRONMENT: BAYESIAN NET-
WORKS

Bayesian networks combine elements from graph and probability theory. They
pictorially represent the assumed dependenciesand i nfluencesamong thevariabl es
consideredtoberelevant for aparticular inferenceproblem. Variablesof interest are
represented by nodeswhilearcsareusedto expressassumed dependenciesbetween
variables. As a main feature, Bayesian networks allow their users to coordinate
probabilistic inferences in different directions, that is, very generally speaking,
from causes to effects and in the reverse direction, from effects to causes. In the
context, thisisalso called bidirectional inference. This means that one can reason
in the direction of a network’s arc, which leads to an evaluation of the probability
of a particular observational variable given the truth of certain conditioning
propositions of interest. On the other hand, one can reason against the direction of
an arc, which amountsto inductive inference about propositions of interest, based
on particular evidence. These inferential properties find widespread interest in
many areas where the study of deduction and induction through probability plays
an important role. Typical examples include medical diagnosis but also forensic
science (Taroni et al., 2014).

In a Bayesian network, nodes and edges are combined in order to form a
directed acyclic graph (or DAG). To express the strength of the relationships
between the variabl es, probability distributions are associated with each node. For
discretevariables, thismeansthat, for example, avariableBwhichhasentering arcs
fromparentsA,,...,A,, will haveaconditional nodeprobability tablePr(B|A, ,...,A ).
When avariable has no parents, atable containing unconditional probabilitiesis
assigned. For example, probabilities Pr(A) will beassigned for avariable Athat has
no entering arcs from other nodes. In aBayesian network with variables A,,..., A,
thejoint probability distribution Pr(A,,...,A,) isgiven by the product of all specified
conditional probabilities:

Pr=(AA)= [17r(A Ipar(4)) ©

where par(A,) represents the set of parental variables of A. Equation (5) iscalled
thechainrulefor Bayesian networks. It formally definesthe meaning of aBayesian
network: therepresentation of thejoint probability distributionfor all thevariables.
Consider thisrulein each of thethree cases of basic sequential connectionsthat can
be made up with Bayesian networks (see Figure 1). For a path from Ato C viaB,
as shown in Figure 1(i), Pr(A,B,C)= Pr(A)Pr(B | A)Pr(C | A,B) can be reduced to
Pr(A,B,C) = Pr(A)Pr(B | A)Pr(C | B).
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Figurel: Serial (i), diverging (ii) and converging (iii) connectionsin Bayesian networks.

For a diverging connection, the joint probability can be written as Pr(C,A,B)=
Pr(C)Pr(A|C)Pr(B|C), whereas in a converging connection it would be
Pr(A,B,C)=Pr(A)Pr(B)Pr(C | A,B).

For building Bayesian networks, the analyst must keep in mind that the
purposeisto represent features of areal-world problem. That is, through the use of
aBayesian network, onecangraphically and numerical ly expressone’ sunderstanding
and perception of a real world system. To illustrate this, consider the network
fragments shown in Figure 1, representing basic building blocs for encoding
dependence and (conditional) independence assumptions that we may have with
respect to particular features of an inference problem. Start by considering serial
and diverging connections. In these types of connections, a path is said to be
‘blocked’ if the middle variable is instantiated®. To make this explicit, consider a
serial connectionwhere Arepresentsthe proposition ‘ suspect istheoffender’, Bthe
proposition ‘the blood stain found on the crime scene comes from the suspect’,
andC ‘the suspect’s blood sample and the blood stain from the crime scene share
the same DNA profile'. In such a network fragment, the proposition A is relevant
for Band soisB for C. However, given B, the cause of the presence of blood could
bedifferent from A. Next, consider adiverging connection. Thistype of connection
is appropriate when one judges that knowledge about an event A is relevant for
another event B and that knowledge about a third event C, which conditions both
A and B, separates A from B. Thisholds, for example, in acase where C represents
the propasition ‘the suspect has assaulted the victim’, A *‘the bloodstain on the
suspect’sclothescomesfrom thevictim’ and B ‘ the bloodstain onthe victim comes
from the suspect’. In converging connections, a path is blocked for the flow of
information aslong asthe intermediate variable, or one of its descendants, has not
received evidence. For example, inamedical context, let A denote the proposition

5 Avariableiscaled instantiated if its state is changed from ‘unknown’ to ‘known’.
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Figure 2: Different modesreasoning in Bayesian networks (prevision and diagnosis).

‘the patient has disease A’ and B ‘ the patient has disease B’ . Then, knowledge that
one of these events occurred would not provide information about the occurrence
of the other. However, if it becomes known that the intermediate variable C holds
(e.g., theproposition ‘ the patient shows scientific evidence C, such asfever’), then
A and B become rel ated.

Figure2illustratesthe principa modesof probabilistic reasoningin Bayesian
networks. For the ease of argument, interpret the network as a representation of
relationships of cause and effect. Thus, let us say that causes‘ produce’ the effects,
that is, knowing that a cause occurred, it can be foreseen that the effect will occur
or might probably occur, too. Thiskind of reasoning isal so known asprevision. For
example, if a person of interest (e.g., a suspect) is the source of a crime stain
(represented, for instance, in terms of a variable S), then we might expect that
laboratory analyses find corresponding DNA profiles between reference material
from the suspect and the crime stain. Such ascientific result can berepresented, for
example, interms of asecond variable E. In this network, with structure S — E, if
S is known, then the probability of the child variable E will be given by the
probability Pr(E | § as specified in the conditional node table of E. Note that,
usually, this probability istaken to be considerably larger than the probability for

acorrespondenceif the suspect were not the source of thecrimestain: Pr(E| S) <
Pr(E|S).

Note, however, that the effect does not ‘ produce’ the cause. Instead, knowing
that the effect occurred, one may infer that the cause probably occurred. Thisisa
line of reasoning against the causal direction (i.e., anetwork’sarc), referred to as
‘diagnostic’. For example, on the basis of analytical results that reveal the same
DNA profilefor the stain and the reference material from the suspect (represented
by variable E), one’'s belief in the proposition that the suspect is the source of the
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stain (variable S) should increase. Thisissowhenever Pr(E| S)< Pr(EI S), that
isthefinding of corresponding DNA profilesismoreprobableunder theproposition
S(i.e., the suspect isthe source of the crime stain) rather than under the alternative
proposition S (i.e., an unknown person is the source of the crime stain). In a
medical context, an example of using the network structure S - E could be
analyses(i.e., diagnostictesting) showing that thepatient’ sblood containsacertain
quantity of a given target substance (represented by variable E), which is used as
a basis to revise one's belief in the proposition that the patient has a particular
disease (conditioning variable S). Within Bayesian networks, such a revision of
belief is operated according to Bayes theorem (Equation (1)). Note that such
computations are possible over much larger network structuresthat consideredin
the general presentation giveninthis Section. An exampl e of an extended network
is pursued in Section 6.

6. BAYESIAN NETWORKS FOR KINSHIP ANALYSES USING DNA
PROFILING RESULTS

Consider again the scenario introduced at the end of Section 4. There are two
individuals child c1 and child c2 who share the same two parents (mother m1 and
father f). A third individual, child c3, known to have a mother m2 different from
mother m1, seekstoinvestigatethedegreeof relatednesswith respect toindividuals
cland c2 (i.e., half-sibship versus unrelated). Father f is considered as a putative
father of c3, but, unfortunately, f is deceased and unavailable for DNA profiling
analyses. To approach this case through a Bayesian network, start by considering
basi ¢ sub-model sto deal with genetical characteristics, asshowninFigures3(i) and

(ii).

Cepg D Cemg > Cmpg ) Cmmg>

@ (ii)

Figure 3: Bayesian networ k fragments, from methodology described in Dawid et al. (2002),
representing (i) a child’s genotype, cgt, with cpg and cmg denoting, respectively, the
child’s paternally and maternally inherited genes, and (ii), a child’s maternal gene,
cmg, reconstructed as a function of the mother’ s pater nal and mater nal genes, mpg
and mmg, respectively. The states of gene nodesrepresent the different forms(i.e.,

alleles) that a genetic marker can assume whereasthe states of the genotype nodes
regroup pairsof alleles.
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For sakeof illustration, consider thenetwork fragment (ii) displayedin Figure
3. Let us suppose that the node mpg (short for ‘ mother paternal gene') coversthe
states6, 7 and x, representing the number of short tandem repeats (STR) at thelocus
THOL1, with x summarising all aleles other than 6 and 7. The unconditional
probabilitiesrequiredfor thevariousstatesof thenodempg areassigned onthebasis
of therelevant allelic population proportions, obtained from databases or scientific
literature. The samedefinition appliesfor thenodemmg (short for * mother maternal
gene'). Next, for each marker included in the analysis of our complex scenario, the
genotypeisrecorded. Thelatter consistsof two genes, onebeinginherited fromthe
mother and the other from thefather (although one cannot observewhichiswhich).
The Bayesian network fragment in Figure 3 (ii) captures an individual’s genotype
for agiven marker and the transmission of alelesto a descendant (child).

Based on these considerations, the network in Figure 4 can be constructed to
describe the scenario under investigation.

This network can accommodate DNA profiling results for a single marker.
The structure of thismodel istheresult of alogical combination of submodelsthat
themselves may be acomposition of model fragments. Exampl es of submodelsare
shownin Figure 4 using rounded boxes with dotted lines (other submodels may be
chosen). The submodel (@) represents the genotypes of the individuals cl and c2,
conditioned on the genotypes of the undisputed parents m1 and f. This submodel
isitself acomposition of therepeatedly used network fragment described in Figure
3 (i). The same network fragment is invoked to implement the genotype of the

Figure 4: Bayesian network for evaluating DNA profiling resultsin a case of questioned
kinship. Nodesc, f, m (in the first place) and t f denote, respectively, child, father,
mother and true father. Nodeswith names*...mg’ and ‘...pg’ denote, respectively, an
individual’s mater nally and paternally inherited genes. Nodes with names*...gt’
represent an individual’s genotype. Thenodet f = f? isbinary with values ‘yes and
‘no’ in answer to the question whether the undisputed father f of the children c1 and
c2isthetruefather of the child c3.
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individualsc3 (submaodel (b)) and m2 (submodel (c)). A subtleconstructional detail
concerns the connection between the two submodels (a) and (b). As there is
uncertainty about whether f isthe true father of ¢3, the paternal gene of ¢3, c3pg,
isnot directly conditioned on f’s parental genes (that is, nodesfmg and f pg). Such
uncertainty isaccounted for through adistinct nodet f = f?that requlatesthe degree
to which f’sallelic configuration is allowed to determine c’s true father’s parental
genes, represented here by nodest fmg and t f pg.

Theabove considerationsclearly illustrate that Bayesian network modelsare
highly versatile and can deal with a variety of aspects that affect the coherent
evaluation of scientific results. This includes partial evidence and additional
complicationssuch asgenetic mutation (Dawid et al., 2002). Thisexplainswhy the
use of Bayesian networks for studying the assessment of the weight of scientific
evidence in forensic science is a lively area of research, in particular for DNA
profiling results (Biedermann and Taroni, 2012).

7. CONCLUSIONS

We have emphasized in this paper that limited and incomplete information
represent recurrent constraints in many practical inference problems. Forensic
science and legal medicine provideastrong casefor thisbecause of the paucity and
limitations of the trace material, that is potential evidence, arising in real cases.
Thus, the interpretation of scientific resultsin context must deal with uncertainty
and requires the construction of arguments in a balanced, logical, robust and
transparent way (Jackson, 2000). Inferential disciplines, in particular statistics,
offer sound frameworks — in particular the Bayesian programme — that provide
scientists with a proper approach to this chalenge. Although the practical
implementation of this perspective may not be straightforward in some instances,
there now exist sophisticated frameworks, such as Bayesian networks, available
also in both commercially and academically distributed software environments.
These support the transition from theoretical analysesto operational applications.
Theadvent of such computational support forimplementing probabilisticreasoning
in practice hasopened many new areasof fundamental researchinforensic science.
Today, scientists have never been in a better position to invoke the logical
framework of probabilistic reasoning when they are required to explainin aclear
and explicit way how they have proceeded in solvingintricateinferential problems
and arrived at their conclusions. This represents an important argument in favour
of the requirement of disclosing the rationale behind the work of forensic experts.
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