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1. FORENSIC STATISTICS: THEN

In thisfirst part of the paper we will review some historical cases where statistics
was first introduced in fact finding and identification issues concerning the law.

1.1 THE BEGINNINGS OF FORENSIC SCIENCE

Thefirst recorded use of forensicsin the solution of acrime comesfrom aChinese
handbook for coronerscalled TheWashing Away of Wrongs, producedin1247. One
of themany casestudiesit containsfollowstheinvestigation of aroadside stabbing.
The coroner examined the slashes on the victim’'s body, then tested an assortment
of bladeson acow carcass. He concluded that the murder weapon wasasickle. But
knowing what caused thewoundswas along way from identifying whose hand had
wielded the blade, so heturned to possible motives. Thevictim’s possessionswere
intact, which ruled out robbery. According to hiswidow, he had no enemies. The
best lead was the revelation that the victim hadn’'t been able to satisfy a man who
had recently demanded the repayment of a debt.

Thecoroner accused the moneylender, who denied the charge. But, tenacious
asany TV detective, heordered all 70 adultsintheneighbourhoodto standinaline,
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their sicklesat their feet. Therewereno visibletracesof blood onany of thesickles.
But within seconds a fly landed enthusiastically on the moneylender’s blade,
attracted by minute traces of blood. A second fly followed, then another. When
confronted again by the coroner, themoneylender gaveafull confession. He'd tried
to clean his blade, but his attempt at concealment had been foiled by the insect
informers humming quietly at hisfeet.

1.2 HANDWRITING IDENTIFICATION

Possibly oneof theearliest usesof probabilistic reasoningintheanalysisof forensic
identification evidence dates back to 1865 with the Howland will case. SylviaAnn
Howland died in 1865, leaving roughly half her estate of some 2 million dollarsto
various legatees, with the residue to be held in trust for the benefit of Hetty
Robinson, Sylvia Howland’s niece. Hetty claimed her right to inherit the entire
estate on the basis of an earlier will. The Executor contended that two of the three
signatureson thewill Hetty provided wereforged. In the ensuing case of Robinson
v. Mandell, Benjamin Peirce analysed the contested signature of Sylvia Ann
Howland on her will. He compared 30 downstrokes in the signature with
corresponding downstrokes from a different genuine signature. He showed that
under a binomial model this amount of agreement was highly improbable. He
showed that the number of overlapping downstrokes between two signatures
closely followed the binomial distribution, considering that each downstroke was
an independent event. When the admittedly genuine signature on the first page of
the contested will was compared with that on the second, all 30 downstrokes
coincided, suggesting that the second signature was a tracing of the first.
Benjamin Peirce took the stand and asserted that, given the independence of
each downstroke, the probability that all 30 downstrokes should coincide in two

. . 1 . L
genuine signatures was 5 o= - oo1 . He assumed a probability of coincidence

roughly equal t00.0227. Hewent onto observe® Sovast improbability ispractically
an impossibility. Such evanescent shadows of probability cannot belong to actual
life. They are unimaginably lessthan thoseleast thingswhich the law caresnot for.
[omissis] The coincidence which has occurred here must have had itsoriginin an
intention to produce it. It is utterly repugnant to sound reason to attribute this
coincidence to any cause but design.”
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1.3 TALPIYOT TOMBS

In 1980, aburial tomb was unearthed in East Tal piyot neighbourhood of Jerusalem
contai ning ossuaries(limestone coffins) bearinginscriptionsthought tobe* Yeshua
son of Yehosef”, “Marya’ and “Yoseh”; names which match those of New
Testament (NT) figures. However, these nameswerein common use at thosetimes.
Feuerverger (2008) analyses the plausibility that the names inscribed on the
ossuaries match those of the New Testament (NT) figures. The evidence on which
theanalysisisbased isthe distribution of names (onomasticon) inthe erawhen the
tomb was dated, around 30 AD. Mortera and Vicard (2008) show an example of
how an obj ect-oriented Bayesian network could have been used for evaluating the
weight of two pieces of identification inference relevant to the ossuary findings:
that from onomasticon together with that from DNA profiling of the bones found
in the named tombs.

1.4 FORENSIC IDENTIFICATION IN THE TALMUD

In the context of identification the Talmud law gives guidelines on objects whose
identity is unknown and reference is made to the likelihood that they derive from
a specific source in order to determine their legal status, i.e. whether they be
permitted or forbidden, ritually clean or unclean, etc. (Rabinovitch, 1969). For
example, only meat which hasbeen slaughteredin the prescribed manner iskasher,
i.e. permitted for food. In Hullin 11a the rule is “Follow the mgjority”, so when
finding, for example, apiece of unidentified meat and there are nine shops selling
kasher meat and only one not, then the meat can be eaten.

Inthelaw of inheritance the Talmud eval uatesthe probability that a pregnant
womanwhosehusband dieswill bear alivemal echild. Thisprobability must beless
thanone-half; asgivenin Yevamoth 119a: Aminority [ of pregnant women] miscarry
and of all thelivebirthshalf are maleand half femal e. Add theminority of thosewho
miscarry to the half who bear females and the males arein a minority.

A ruling of the 2nd century that states: (Yevamoth 64b): [ A mother] had one
child circumcised and he died; a second one and he died; one must not circumcise
the third, shows that the independence assumption of certain events cannot be
assumed, unlike how the independence assumption was erroneously made in the
year 2000intheSally Clark case(ayoungwomanwrongfully accused of murdering
her two babies, based on flawed probabilistic reasoning presented in court by a
pediatrician Professor Sir Roy Meadow). For further detailsonthe Sally Clark case
see(http://wwmv sal |l ycl ark. org. uk), (http://ww. st at sl ab.
cam ac. uk/ ~apd/ Sal | yd ark_report. doc).
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15 L’AFFAIRE DREYFUS

Alfred Dreyfus was born in 1859 in Mulhouse, then located in Alsace, into a
prosperous Jewish family. He left his native town for Parisin 1871 in response to
the annexation of the province by Germany following the Franco-Prussian War.

In 1894, while an artillery captain for the Genera Staff of France, Alfred
Dreyfus was suspected of providing secret military information to the German
government and was condemned to life imprisonment for espionage on Devil’'s
Island.

Alphonse Bertillon was awitnessfor the prosecution in the Dreyfus affair in
1894 and again in 1899. (Bertillon founded the first laboratory for criminal
identification in France. He was head of the identification branch of the Préfecture
of Police. He applied anthropometry or Bertillonage to law enforcement and
created an identification system based on physical measurements aswell as many
other forensictechniques). Hetestified asahandwriting expert and claimed that the
incriminating document (known as the “bordereau”) contained strong evidence
pointing to Dreyfus's handrwriting, and where it differed the discrepencies were
deliberate. However, he was not a handwriting expert, and his convoluted and
flawed evidence was a significant contributing factor to one of the most infamous
miscarriages of justice. Using a complex system of measurements (based on
geometric transformations, probability calculus and military cryptography), he
attempted to prove that Dreyfus had disguised his handwriting and forged an
imitation of hisown handwriting. Both courtsmartial accepted Bertillon’sanalysis,
and Dreyfus was convicted. The verdict of the second court martial caused a huge
scandal, and it was eventually overturned.

“Jaccuse...!” was an open letter published on in January 1898 in the
newspaper L’ Aurore by the influential writer Emile Zola In the letter, Zola
addressed the President of France, Félix Faure, and accused thegovernment of anti-
semitismandtheunlawful jailing of Alfred Dreyfus. Zolapointed out judicial errors
and lack of serious evidence. The letter was printed on the front page of the
newspaper and caused a stir in France and abroad. Zola was prosecuted for and
found guilty of libel on 23 February 1898. To avoid imprisonment, he fled to
England, returning home in June 1899.

Bertillon used the notion frommilitary cryptography that coded messagesare
often written using a“key” (here using the word intérét) repeated many times. He
overlaid the bordereau on the “key” and saw that many letters matched, but many
did not. So he made asecond almost identical key except for vertical lines set to be
the samedistance apart asthose of the bordereau. He now placed the bordereaufirst
over one and then over the other key, shifted over by one letter, and counted the
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letterse, n, r, t (the most frequent in French writing) that matched the same | etters
in the word intérét. He computed the expected values of the most frequent lettersin
French writing, according to the frequency of their occurrencein the key. Now, the
bordereau contained about 800 |etters and, for example, 60 werer’s, so onewould
expecttofind 1/7 (therebeing 1r inthe 7 letters of intérét) of ther’sinthebordereau
lying over anr in the key, i.e. between 8 or 9 r’s. Whereas, Bertillon found 17.

In 1906, Dreyfusappeal ed hiscase again, to obtai n theannulment of hisguilty
verdict. Thefallacy in Bertillon’s reasoning was revea ed only then in the Court of
Appeal by three mathematicians, Poincaré, Appell and Darboux. They stated “If
one takes certain coincidences as evidence, and one shows that there had been a
priori few chances for those to happen, have we the right to conclude that they
cannot bethe effect of chance?’ Furthermore, they showed that by using two keys,
Bertillon was basically doubling the probability of coincidence of certain letters
being overlaid. Theverdict wasoverturned and Dreyfuswasal so awarded the Cross
of theLégion d’ Honneur, whi ch stated, “ asol dier who hasendured an unparallelled
martyrdom.”

CharlesM. F. W. Esterhazy was acommissioned officer in the French armed
forcesand wasaspy for the German Empire and the actual perpetrator of the act of
treason of which Captain Alfred Dreyfus was wrongfully accused and convicted.
When later comparing the writing of Esterhazy with the bordereau even Bertillon
stated that there was a perfect match.

Furthermore, Bertillon stated that there were four coincidences out of the 26
initial and final letters of the 13 repeated polysyllabic words in the document. He
evaluated the probability of an isolated coincidence as 0.2 and calculated a
probability of 0.24 = 0.0016 that four such coincidences would occur in normal
writing. But 0.2* isthe probability of four coincidences out of four; that of four or
moreout of 13issome 400 timesgreater, approximately 0.7. For further detailson
L’ Affaire Dreyfus see Schneps and Colmez (2013).

2. FORENSIC STATISTICS: NOW

Legal applications of probabilistic and statistical reasoning have a long history,
some exampl es have been given in Section § 1. For an excellent overview of the
history of probabilistic reasoning in courts, see Zabell, (1988).

Forensic statistics is experiencing a period of rapid change because of the
tremendous evolution in DNA profiling, DNA database searching, cybersecurity
etc. DNA evidence hastransformed the proof of identity in criminal litigation, but
it has also introduced daunting problems of statistical analysis into the process.
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Since the pioneering work of Jeffreyset al. (1985), genetic fingerprinting or DNA
profiling has become an indispensable tool for identification of individualsin the
investigative and judicial process associated with criminal cases, in paternity and
immigration cases, and in other contexts. Problems of forensic identification
from DNA evidence can become extremely challenging, both logically and
computationally, in the presence of complicating features such as missing data
onindividuals, mixed DNA trace evidence, heterogeneous popul ations, mutation
etc. The features of probabilistic expert systems (PES) and Bayesian networks
(BNs) have been exploited to handle a wide variety of complex problems of
forensic identification such as: kinship analysis (Corradi and Ricciardi, 2013;
Corradi et d., 2003; Dawid et al., 2002a; Dawid €t al., 2007; Vicard et al., 2008;
Green and Mortera, 2009; Aitken and Taroni, 2004; Taroni et al., 2010);
integrating forensic information from various sources (Taroni et a., 2014;
Biedermann et al., 2008; Garbolino and Taroni, 2002); identification of individuals
in DNA mixtures with models based on discrete alelic information (Mortera,
2003; Mortera et al., 2003; Lauritzen and Mortera, 2002) as well as continuous
gamma distributed peak height information (Cowell et al., 2006; Cowell et al.,
2007a; Cowell et al., 2011; Cowell et al., 2007b).

Besides the main applicationsin DNA evidence evaluation, i.e. inference of
source and relatedness testing as discussed in the previous paragraphs, Bayesian
networks have also been devel oped for the study of avariety of further topics that
gravitatearound the eval uation of forensic analysessuch ascross-transfer evidence
in criminal cases and error rates.

We do not suggest that judges and juries are likely to have (or should be
expected to acquire) a sophisticated understanding of probability or facility in
mani pul ating probabilities; nor that explicit probability arguments should become
routine in courts of law. In the previous sections we gave some historical cases
where incorrect probabilistic arguments were used in courts, leading to the
condemnation of innocent suspects.

Nowadays, there are however increasing numbers of cases — such as DNA
identification, or the Sally Clark case—whereevidenceabout probabilitiesisclearly
relevant, and thecourt woul d stand to benefit from advice about how to handlethem.

Sometimes — but all too rarely — there will be extensive relevant frequency
data, in the light of which all reasonable subjective probabilities for some event
should essentially agree with its observed relative frequency. In other cases all
partiesmay bewillingto accept an expert withess sassessmentsof someprobabilities.
Yet other probabilities, relevant for the juror or other judicial decision-maker, will
be subject to subjective vagueness, although wewill usually be ableto distinguish
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between “reasonable” and “unreasonable” probability assessments. But even
where probability values can be agreed on, their correct handling is far from
obvious or intuitive, and fallacious intuitions, arguments and inferences abound.

3. PROBABILITY LOGIC

Inacaseat law, let € denote one or more items of evidence (perhaps itstotality).
We need to consider how this evidence affects the comparison of the hypotheses,
H, and H, say, offered by either side. Thusin acriminal case with asingle charge
against asingle defendant, the evidence might be that the defendant’s DNA profile
matchesonefound at the cri_mescene; hypothesis Ho offered by thedefence, isthat
the defendant isinnocent (G ); the prosecution hypothesis, H,, isthat of guilt (G).

The adjudicator needs to assess his or her conditional probability for either
hypothesis, giventheevidence: Pr(H, | &) and Pr(H, | €). However, itwill not usually
bepossibleto assessthesedirectly, and they will haveto be constructed out of other,
more basic, ingredients. In particular, it will often be reasonable to assess directly
Pr(e|H,) and Pr(g|H,): the probability that the evidence would have arisen, under
each of the competing scenarios.

Bayes's theorem — a trivial consequence of the definition of conditional
probability probability — tells us that

Pr(Hyfe) _ Pr(n,) Pr(eH,)
Pr(Hole)  Pr(H,) Pr(elH,) (@

Theleft-hand side of (1) isthe posterior oddsfor comparingH, and H,, given
the evidence ¢: thisis a simple transformation of Pr(H, | £), the desired posterior
probability of H,.

Thesecondtermontheright-hand sideof (1) isconstructed out of thedirectly
assessed termsPr(e |H,) and Pr(e |H,): itisthelikelihood ratio (for H,, asagainst
H,) engendered by theevidencee. Itisnoteworthy that only theratio of theseterms
enters, their absolute values being otherwise irrelevant.

Tocomplete (1) weneedthetermPr(H,)/Pr(H,), theprior oddsfor comparing
H, and H, (i.e., beforethe evidence ¢ isincorporated). This might reasonably vary
from one individual juror to another, so that it would not be appropriate to treat it
asasubject for direct evidence. For thisreason forensic expertsare often instructed
togivetheir evidenceintheformof alikelihoodratio, it beingleft to the adjudicator
to combine this appropriately with the prior assessment, using (1).
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We can express (1) in words as:
POSTERIOR ODDS = PRIOR ODDS x LIKELIHOOD RATIO.

When ¢ denotes all the evidence in the case, al the probabilitiesin (1) are
unconditional; inparticular, the prior odds should be assessed on the basi sthat there
isno evidenceto distinguish the suspect from any other potential suspect —thiscan
be regarded as one way of formalising the lega doctrine of “presumption of
innocence” (which of courseisnot the same asan assumption of innocence). When
£ denotes a piece of evidence presented in mid-process, all the probabilitiesin (1)
must be conditioned on theevidence previously presented: in particular, the“ prior”
probabilities could themselves have been calculated using (1), as posterior
probabilities based on earlier evidence.

Notwithstanding the unarguable correctness of (1), it is often replaced by
other, more “intuitive’, probabilistic arguments, that can be very miseading.

3.1 THE PROSECUTOR'SFALLACY

Inacriminal trial, an item of evidence £ may be offered in proof of the guilt, G, of
adefendant S, on the basisthat the probability of e would bevery low if Swere not
guilty (6 ). For example, inthetria of Sally Clark for double infanticide (Dawid,
2005; Dawid, 2008), an expert medical witness testified that the probability that
both her babies would have died from natural causeswasonein 73 million.! If, as
appearsvery natural, we describethisfigure as*” the probability that the babiesdied
by innocent means’ itisall too easy to misinterpret thisasasthe probability (onthe
basisof theevidenceof thedeaths) that Sally isinnocent—such atiny figureseeming
to provide incontrovertible proof of her guilt. Mathematically, thisisequivalent to
misinterpreting Pr(¢ | G ) asPr( G | £). For obvious reasonsthis error is known as
“transposingtheconditiona”, or, becauseit typically producesseemingly convincing
evidence of guilt, “the prosecutor’s fallacy” (Thompson and Schumann, 1987).

The prosecutor’s fallacy is a seductive and widespread mode of reasoning,
affecting the general public, the media, lawyers, jurors and judges aike. Although
wedo not haveaccesstothedeliberationsof Sally Clark’sjury, it hasgenerally been
considered that their “Guilty” verdict was strongly influenced by such mistaken
reasoning.

1 This figure has itself been widely and properly criticised, but that is not the issue here.
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3.2 FORENSIC IDENTIFICATION

A particularly fertile field where the prosecutor’s fallacy flourishes is that of
identification evidence. Here, unlike the case for Sally Clark, it is undisputed that
a crime has been committed: the issue before the court is whether or not the
suspect, S, isindeed the culprit, C. Thusthe hypothesis G of guilt is equivalent to
that of identity, C = S. Evidence ¢ is presented which bears on this. This may be,
for exampl e, eye-witnessevidence (asinthecelebrated “ Collinscase” (Fairley and
Mosteller, 1977), which kick-started modern interest in the interpretation of
probabilitiesinthelaw), or forensi c evidenceof amatch between somecharacteristic
of the crime scene (the“ crimetrace”) and asimilar characteristic measured on the
suspect. Examplesinclude handwriting, rifling marks on bullets, glass fragments,
fibres, footprints, fingerprints, bitemarks, and, of especial importance and power,
DNA profiles. Itiscommoninsuchacasefor thejury tobetold somethinglike“ The
probability of this DNA match arising from an innocent man is only one in one
billion”, andfor all partiesto misinterpret thisnumber, inlinewith the prosecutor’s
fallacy, asthe probability of S'sinnocence.

3.3 DATABASE SEARCH

Search scenarios are common in cases where a DNA trace is found at the crime
scene and, in the absence of any obvious suspect, a search for a match is made
through a police database of DNA profiles.

Computerised search typically alows us to identify every individual in the
database whose DNA profile matches the crime trace. Let P denote the initial
probability that an individual matches, independently for different individuals.
Supposethat thereisexactly onesuchindividual, S. If theinitial suspect population
isof sizeN + 1 and the database is of size n + 1, then the search has eliminated n
individuals from the suspect population and so, if there is no other evidence to
distinguish among those remaining, the odds on Sbeing guilty areincreased from
UNP to /(N — n)P. (If there is other evidence for or against S this could be
expressed as a likelihood ratio, and combined with the above odds using Bayes's
theorem. It is also possible to account for evidence pointing the finger towards or
away from other individuals.)

Whennissmall inrelationto N theeffect of the database searchisonly asmall
increase in the probability that Sis guilty. Thisisfortunate, since evidence that a
search was conducted to identify the suspect is usually inadmissible in court.
Ignoring it will typically makelittle difference, and to the extent that it doesit will
be to the advantage of the defendant.

However at the other extreme, wherethewhole populationissearched (n=N)
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and Sistheonly individual found to match, we obtain infinite odds, corresponding
to certainty, that Sis guilty — asis obviously appropriate in this case.

4. FORENSIC GENETICS

Most of thelogic so far presented appliesin principleto any kind of identification
evidence. But forensic DNA evidence has some additional specia features,
principally owing to its pattern of inheritance from parent to child. These make it
possible to use it to address queries such as the following:

Disputed paternity: Isindividual A the father of individual B?

Disputed inheritance: Is A the daughter of deceased B?

Immigration: Is A the mother of B? How is A related to B?

Criminal case: mixed trace: Did A and B both contributeto astain found at the
scene of the crime? Who contributed to the stain?

Disasters: Was A among theindividualsinvolved in adisaster?Who werethose
involved?

Inasimpledisputed paternity case, theevidence ewill comprise DNA profiles
from mother, child and putative father. Hypothesis H, isthat the putative father is
the true father, while hypothesis H, might be that the true father is some other
individual, whose DNA profile can be regarded as randomly drawn from the
population. We can al so entertai n other hypotheses, such asthat one of one or more
other identifiedindividual sisthefather, or that thetruefather isthe putativefather's
brother.

In a complex criminal case, we might find a stain at the scene of the crime
having theform of amixed trace, containing DNA from more than one individual.
DNA profilesarealso taken from thevictim and asuspect. We can entertain various
hypotheses as to just who — victim? — suspect? — person or persons unknown? —
contributed to the mixed stain.

When we are only comparing two hypotheses H, and H,, the impact of the
totality of theDNA evidence ¢ available, fromall sources,isonceagaincrystallised
inthelikelihoodratio, LR = Pr(e|H,)/Pr(¢|H). If wewishto compare more that
two hypotheses, we require the full likelihood function, a function of the various
hypotheses H being entertained (and of course the evidence ¢):

lik(H) OPr(e|H). )

Theproportionality signin(2) indicatesthat we haveomitted afactor that does
not depend on H , although it can depend on €. Such afactor isof no consequence
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and need not be specified, since it disappears on forming ratios of likelihoods for
different hypotheses on the same evidence. Only such relative likelihoods are
required, not absolute values.

We also now need to specify the prior probabilities, Pr(H ), for thefull range
of hypotheses H. Then posterior probabilitiesin the light of the evidence are again
obtained from Bayes's theorem, which can now be expressed as:

Pr(H | ) OPr(H) x lik(H). (3)

Again the omitted proportionality factor in (3) does not depend on H,
although it might depend on €. It can be recovered, if desired, as the unique such
factor for which the law of total probability, 3, Pr(H | £ )=1, is satisfied.

4.1 GENETIC BACKGROUND

To proceed further we need somebasi ¢ genetic factsabout DNA profiles, whichwe
summarise very briefly below: for more details see e.g. Butler (2005).

A geneisaparticular sequence of thefour bases, represented by thelettersA,
C, Gand T, that carry the genetic information in DNA. A specific position on a
chromosome is called a locus; since chromosomes come in pairs, there are two
genes at any locus. A DNA profile consists of measurements on a number of
forensic markers, which are specially selected loci, on different chromosomes.
Current technology uses around 12—20 short tandem repeat (STR) markers. Each
such marker has a finite number (up to around 20) of possible values, or alleles,
generally positiveintegers. For example, an alelevalueof 5indicatesthat acertain
word (e.g. CAGT) in the 4-letter alphabet of the genetic code is repeated exactly 5
timesin the DNA sequence at that locus on a chromosome.

Anindividual’sDNA profilecomprisesacollection of genotypes, onefor each
marker. Each genotype consists of an unordered pair of alleles, oneinherited from
thefather and onefrom the mother (though one cannot distinguish whichiswhich).
When both alleles are identical the individual is homozygous at that marker, and
only asingle alele value is observed; else the individual is heterozygous. In most
cases a DNA profile can be measured without error, even from asingle cell.

Assuming Mendelian segregation, at each marker a parent passes a copy of
just one of histwo alleles, randomly chosen, to his or her child, independently of
the other parent and independently for each child. Distinct forensic markers are
located ondifferent chromosomes, so segregateindependently. Itisoftenreasonable
to assume random mating within an appropriate population, which then implies
independence of aleles both within markers (Hardy-Weinberg equilibrium) and
across markers (linkage equilibrium). Databases have been gathered from which
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alele frequency distributions, for various populations, can be estimated for each
forensic marker. On the basis of these values and the independence assumptions,
aprofile probability can be assigned to any DNA profile, measuring itsrarity inthe
population.?

4.2 SIMPLE DISPUTED PATERNITY

A man is aleged to be the father of a child, but disputes this. DNA profiles are
obtained from the mother m the child ¢, and the putative father pf . Onthebasis of
thesedata, wewish to assessthelikelihood ratio for the hypothesisof paternity: H,:
t f =pf , thetrue father isthe putative father; as against that of non-paternity: H,,:
t f =af ,whereaf denotesan unspecified alternativefather, treated asunrelated to
pf and randomly drawn from the population.

The disputed pedigree can be represented asin Figure 1.

af

Figure 1: Pedigreefor smpledisputed paternity.

2 Although we do not develop this here, one should really allow for the fact that alele
frequency estimates based on finite databases remain uncertain. Thisrai ses some subtle new
issues (Balding and Nichols, 1994; Dawid and Mortera, 1996; Green and Mortera, 2009).
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Because of our independence assumptions, we can analyse the markers one
at atime, finally multiplying their associated likelihood ratio values together to
obtain the overall likelihood ratio based on the full collection of markers.

Consider now the measured genotypes, from all three parties, for some fixed
marker. Under paternity, H,, we just apply Mendel’s laws of segregation; under
non-paternity, H, we require (estimates of) the frequencies of relevant marker
aleles among the population. Using (1) this can then be combined with the prior
odds of paternity, based on external background evidence B, in order to obtain the
posterior odds for paternity. As an illustrative example, suppose that the data, for
marker D7, are: child’sgenotypecgt ={12, 12}, mother's genotype ngt ={10,
12}, putative father's genotype pf gt = {10, 12}. The estimated population
frequencies of alleles 10 and 12 are, respectively, 0.284 and 0.260. In this case,
conditioning on the genotypes of mother and putative father (which makes no
differencetotheanswer), we seethat the child’ sgenotypewill beasobservedif and
only if both the mother and the true father contributed allele 12 to the child. This
event hasprobability 0.5x 0.5if thetruefather isthe putativefather, and probability
0.5 x 0.260 if the true father is, instead, some unrelated individual from the
population. Thus the likelihood ratio in favour of paternity, based on marker D7
aone, is1.93.

4.3 DNA MIXTURES

A mixed DNA profileistypically obtained from an unidentified biological stain or
other trace thought to be associated with a crime. This commonly occurs in rape
cases, in robberies where an object might have been handled by more than one
individual, and also in a scuffle or brawl. For a mixed DNA trace there is no
constraint onthenumber of distinct allel esobserved for each marker, sincethetrace
might have been formed as a mixture of biological material from more than one
person.

In simple cases of DNA mixtures when using only the qualitative allele
information, algebraic formulae for calculating the likelihoods of al hypotheses
involving aspecified set of known and unknown contributorsto the mixture can be
computed (assuming Hardy-Weinberg equilibrium and known allel e frequencies).

To illustrate, suppose that, for asingle DNA marker, we have athree-allele
crime trace { A, B, C}, and individual profiles from avictim, v={B, C}, and a
suspect, s={ A}. Thesetogether with the all el e frequencies constitute the evidence
¢ for the case. Suppose we wish to compute the likelihood ratio in favour of the
hypothesis that the victim and suspect contributed to the mixture: H,: v & s, as
against the hypothesis that the victim and an unknown individual u contributed to
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the mixture: H,: v & u. Itis not difficult to show that in thiscasethe LR is

1
Pi+2P,Ps +2P,P; @
where p; is the frequency of alelei in the population.

LR

5. BAYESIAN NETWORKSFOR FORENSIC DNA IDENTIFICATION

In more complex scenarios than those described above it can become difficult or
impossible to obtain the required probabilistic formulae.

Incasesof disputed paternity it commonly occursthat the DNA profilesof one
or more of the “principal actors’ in the pedigree are not available; but there is
indirect evidence, inthe form of DNA profiles of variousknown relatives. In §5.5
below we consider such acase, wherethe putative father is unavailablefor testing,
but wehave DNA fromtwo of hisbrothersand an undisputed child of hisby another
woman. The analysis of al the datais clearly now much more complex. Likewise
the appropriate extensions of (4) become relatively complex when the number of
potential contributorstothemixturebecomeslarge; or if wewant to usequantitative
data (peak areas), which contain important additional information about the
composition of the mixture; or to alow for uncertainty in allel e frequencies and/or
population substructure.

To handl e such cases sophisticated probabilistic model ling tool sarerequired.
Again, Bayesian networks, together with their associated computational
methodology and technology, have been found valuable for this, particularly in
their “object-oriented” (OOBN) form, as implemented in commercial software
suchasHugin 63. Bayesian networksfor eval uating DNA evidencewereintroduced
by Dawid et a. (2002). Further description and developments can be found in
Mortera (2003); Mortera et a. (2003); Vicard et a. (2004); Cowell et al. (2004);
Dawid et al. (2006); Dawid et al. (2007); Taroni et a. (2006).

For someillustrative cases, wedescribebel ow how wecan construct asuitable
OOBN representation of acomplex DNA identification problem, incorporating al
the individual s involved and the relationships between them.

51 SIMPLE DISPUTED PATERNITY

We use the examplein 8 4.2 of simple disputed paternity to introduce some basic
ingredients of forensic OOBNSs.

8 Qbtainable from www. hugi n. com
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Infact Figure 1isjust therelevant “top-level” network, constructed using the
graphical interfaceto Huain 6. Each node (except the hypothesisnodet f =pf ?)in
Figure lisitself an “instance” of another generic (“class’) network, with further
internal structure. In what follows, bold face will indicate a network class, and
t el et ype f ace will indicateanode or instance. We describe only selected features
here. A fuller description of OOBN networksfor paternity casework can be found
in Dawid et a. (2007); Dawid et al. (2006).

Each of m pf andaf isaninstanceof aclassfounder, whilecisaninstance
of classchild andt f isan instance of class query.

Within founder (not shown) we have two instances (maternal and paternal
genes) of a class gene which embodies the relevant repertory of aleles and their
associated frequenciesin the relevant population.

The internal structure of child isdisplayed in Figure 2.

tog tmg mpg mmg

L 4 F

,,,,,,,, Mmeinsis

Figure 2: Networks child and meiosis.

On the paternal (left-hand) side of child, the input nodes f pg and f ngy
represent the child's father’'s paternal and maternal genes. These are then copied
into nodespg and g of aninstancef nei osi s of aclassnetwork meiosis, whose
output node cg is obtained by flipping a fair coin (node cg=pg?) to choose
between pg and ng; thisis then copied to pg (child's paternal gene) in network
child. A similar structure holdsfor the maternal (right-hand) side of child. Finally
pg and ng are copied into an instance gt of a network class genotype, which
forgets the information on parental origin (thisisalso afeature of founder). Any
DNA evidence on the individual is entered here.
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Thehypothesisnodet f =pf ? embodiesH, (t f =pf ) whenittakesthevalue
true and H,, (t f =af ) when falsg; it feedsinto the instance t f of class query to
implement this selection. We initially, and purely nominally, set both hypotheses
as equally probable, so that, after propagation of evidence, the ratio of their
posterior probabilities yields the paternity ratio based on this marker. By entering
the data for each marker into the appropriate Bayesian network, we can thus
easily calculate the associated likelihood ratio for paternity.

We build a separate such network for each STR marker, incorporating the
appropriate repertoire of aleles and their frequencies. On entering the available
DNA data, we can compute the associated likelihood ratio. Finally we multiply
these together across all markers to obtain the overall likelihood ratio.

Once supplied with the basic building blocks founder, child and query, we
can connect them together in different ways, much like a child’s construction set,
to represent awide range of similar problems. An illustration is given in the next
section.

52 COMPLEX DISPUTED PATERNITY

Figure3isaOOBN representation of adisputed paternity casewherewehave DNA
profilesfrom adisputed child c 1 and fromitsmother m1, but not from the putative
father pf . We do however have DNA from ¢2, an undisputed child of pf by a
different, observed, mother n2, aswell asfromtwo undisputed full brothersb1 and
b2 of pf. The sibling relationship is made explicit by the incorporation of the
unobserved grandfather gf  and grandmother gm parentsof pf , b1 andb2. The
“hypothesisnode” t f =pf ? again indicates whether thetruefather t f ispf , oris
an aternative father af , treated as randomly drawn from the population.

Figure 3: Pedigree for incomplete pater nity case.
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Nodesgf ,gmni,n2 andaf areall instancesof classfounder; pf,bl,b2,
c1 and c2 areinstances of class child; tf is an instance of class query.

The DNA evidence ¢ consisted of the 6 DNA profiles, each comprising 10
STR markers, fromml, n2, c1, c2, b1l and b2. By entering the data for each
marker into the Bayesian network (incorporating the appropriate alleles for that
marker andtheir frequencies), wecanthuseasily cal culatetheassociated likelihood
ratio for paternity. The overall paternity ratio is then given by their product.

For this particular case this overall paternity ratio evaluates to around 1300,
meaning that the observed DNA evidence is 1300 times more probable on the
hypothesis of paternity than it would be were we to assume non-paternity.
According to Evett and Weir (1998), such avalue might be considered as offering
“very strong support” tothehypothesi sof paternity (although paternity applications
such asthiswill never produce the kind of likelihood ratio value, sometimesin the
billions, that can occur when DNA profiling evidenceis used to match a suspect to
acrime). However it isimportant to remember, in all cases, that thelikelihood ratio
derived from the DNA evidenceisonly one element of the whole story, which aso
involves prior probabilities, and perhaps further likelihood ratios based on other
evidenceinthecase. All theseingredientsneed to becombined appropriately, using
Bayes's theorem, to produce the final probability of paternity.

5.3 MUTATION

Itiseasy tomodify thesenetworkstoincorporateavariety of additional complications.
Onesuchisthepossibility of mutation of genesintransmissionfromparenttochild,
which could lead to atrue father appearing to be excluded (Dawid et al., 2001,
Dawid et al., 2003; Dawid, 2003; Vicard and Dawid, 2004; Vicard et a.., 2004). We
must now distinguish between a child’s original gene cog, identical with one of
the parent’s own genes, and the actual gene cag availableto the child, which may
differ from cog because of mutation. We elaborate the class network meiosis of
Figure 2, asshowninFigure4, by passing itsoriginal output cog (“child’soriginal
gene”’) through an instance cag (“child’s actual gene™) of a new network mut,
constructed toimplement whatever model isused to describe how thevaueof cog
isstochastically altered by mutation. The output of cag isthen copiedtocg. Thus
meiosisnow representstheresult of mutati on acting ontop of M endelian segregation.

Once an appropriate network mut has been built, and meiosis modified as
described above, pedigree networks constructed asin Sections 5.1 or 5.2 will now
automatically incorporate the additional possibility of mutation.
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Figure 4: Revised network meiosis, incor porating mutation.

54 SILENT ALLELES

Yet another complication that is easily handled by simple modifications to lower-
level networks is the possibility that some aleles may not be recorded by the
equipment, so that atruly heterozygous genotype appears homozygous (Dawid et
a., 2007; Dawid et d., 2006). This may be due to sporadic equipment failure, in
which case it is not inherited and we talk of a missed allele; or to an inherited
biological feature, in which case we refer to the alele as silent.

In some cases, making proper allowance for these possibilities can have a
dramatic effect. Table 1 showsresultsfor aparticular casewhere, in additionto the
genotypesngt , pf gt andcgt of mother, putative father and child, we also have
the genotype bgt of the putative father’s brother. These refer to the single STR
marker VWA.

If wehad completedataonthegenotypesngt , pf gt andcgt ,theadditional
databgt would have noimpact whatsoever on the paternity ratio, sincethechild’s
genotype is conditionally independent of information on the putative father's
brother given the mother and putative father’s genotypes. In the case shown, inthe
absence of silence we would have an exclusion. Allowing for silence at various
rates, but using only the data on the basic family triplet, gives the paternity ratios
in the column labelled L, from which we aready see that a small probability of
silencecaninfactleadto apaternity ratio greater than 1—now constituting evidence
infavour of paternity. Theremaining columnsshow theadditional (multiplicative)
effect of using the information on the brother’s genotype bgt , for various cases.
Thefirst row showsthat, even asthe probability of silencetendsto O, itsdisturbing
effect canbevery substantial. Infactwhenbgt ={12, 12}, theoverall paternity ratio
LR=L, xLgachievesamaximumvalueof 1027.3,atpr ( si | ent ) =0.0000642,
even though it vanishes for pr(silent) = 0.
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Table 1: Disputed paternity with brother too. ngt = {12, 15}, pf gt = {14, 14}, cgt = {12, 12}.
Likelihood ratio in favour of paternity allowing for silent alleles: L, without
brother’s genotype. L, further (multiplicative) effect of brother’s genotype.

LB with bgt =
prsilent) | L, | {16,20} {12,17} {1214} {14,17} {14,14} {16,16} {1212}

0 0 1 1 0.546 0.546 1.0000 6.12 1595
0.000015 0.472 1 1 0.546 0.546 0.9999 6.07 403.7
0.0001 2473 1 1 0.546 0.546 1 6.13 3334
0.001 7.485 1 1 0.551 0.551 0.9992 554 46.07
0.01 8.100 1 1 0.590 0590  0.9932 3.19 5.45

55 BAYESIAN NETWORKSFOR ANALYSING MIXED DNA PROFILES

Bayesian networkshave al so been constructed to addressthe challenging problems
that arise in the interpretation of mixed trace evidence. Typically one would be
interested in testing whether the victim and suspect contributed to the mixture, H,:
v & s, against the hypothesisthat the victim and an unknown individual contributed
to the mixture, Hy: v & u. One might alternatively consider an additional unknown
individual u, instead of the victim, with hypothesesH,: u, & sversusH: u, & u,.

Figure5 showsatop-level network which can beused for analysing amixture
with two contributors, pl and p2. Nodes sgt, vgt, ulgt and u2gt are all
instances of anetwork classgenotype and represent the suspect’s, thevictim’sand
twounknownindividuals genotypes. Booleannode p1=s ? representsthehypothesis
that contributor pl isthe suspect s. Node p1gt , the genotype of pl, isan instance
of a network query which selects between the two genotypes sgt or ulgt
according to thetruef/fal se state of the Boolean nodep1=s?. A similar relationship
holdsbetweennodesp2gt ,vgt ,ulgt andpl=v?.Possiblegenotypeinformation
on the suspect and/or the victim is entered and propagated from nodes sgt and
vgt . Thetarget nodeisthelogical combination of the two Boolean nodes pl=s?
andp2=v ? andrepresentsthefour different hypothesesdescribed above. Ai nii x?
determineswhether alele Aisinthe mixture: thiswill be soif at least one Adlele
ispresentineither plgt orp2gt . SimilarlyforBi nm x?,C nni x?, Di nm x?
and xi nm x? (where x refers to al of the aleles that are not observed).
Information ontheallel esseeninthe mixtureisentered and propagated from these
nodes.

The modular structure of Bayesian networks supports easy extension to
mixtures with more contributors, asin cases where arape victim declares that she
has had one consensual partner in addition to the unidentified rapist, or that she has
been victim of multiple rape. Simple modification of the network handles such
scenarios, so long as the total number of contributors can be assumed known.
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Rinmix? [ Biremix? 1 Cinmis? ) L1 L
Figure 5: Bayesian network for DNA mixture from two contributors.

In general, however, athough the evidence of the trace itself will determine
alower bound to thistotal, thereisin principle no upper bound. Thusif in atrace
we see that the maximum number of alelesin any marker isthree, we know that
the minimum number of contributorsthat could have produced thistraceistwo, but
we can not be sure that there were only two. However it is often possible to set a
relatively low upper limit to the number it is reasonable to consider. We allow, as
contributorsto the mixture, persons with known DNA profiles, such asthe victim
and suspect, and possi bly al so unknownindividual s. Each of thevarioushypotheses
H we might consider will involve a specification, x, for the number of unknown
contributors. Although not strictly necessary, for extra clarity we write Pr (¢ |H)
for the probability of the evidence under this hypothesis. Thusthe likelihood ratio
LR needed to evaluate the DNA evidence € — comprising the DNA profiles of the
victim, the suspect and the mixed trace —in favour of a hypothesisH, against an
alternative hypothesisH, is

LR = Prx1 (£|Hl) ’
Pr, ( eH, )
wherex, denotesthe number of unknownindividualsinvolved inthehypothesisH..
When computing the weight of evidence one should give the defendant the
benefit of any doubt or uncertainty, and so present the most favourable reasonable
scenario for the defence. Thisimplies that we should seek and use alower bound
for the value of the LR as we vary our assumptions within reasonable limits. And
this, in turn, requires that we use an upper limit for the number of unknown
contributorsitisreasonableto consider. If theevidenceisincriminating eveninthis
most favourable case, it will be even more so for a larger number of unknown
contributors.



Forensic identification then and now 165

Toaid in setting such an upper limit we can use the fact that Pr, (¢ | H ) can be
no larger than the probability that all the alleles of the x unknown contributors are
in the mixed trace. Thisimplies (Lauritzen and Mortera, 2002):

Prx(£|H)s ﬁ!kjj

where, for each marker m, k_ isthetotal probability that arandomly chosen allele
will be one of those seen in the mixed trace. From thisit follows that, if Ho isany
alternative hypothesis yielding likelihood L ,, we need not consider an alternative
hypothesis H with more than b(L ;) unknown contributors, where

_ Iny
o(y) 2y " Ink

since that would yield alikelihood smaller than L.

Onceit has been agreed to limit attention to some maximum total number of
potential contributors, cases where the number of unknown contributors is itself
uncertain can again be addressed using a Bayesian network, now including nodes
for the number of unknown contributors and the total number of contributors
(Morteraet al., 2003). This can be used for computing the posterior distribution of
the total number of contributors to the mixture, as well as likelihood ratios for
comparing all plausible hypotheses.

The modular structure of the Bayesian networks can be used to handle still
further complex mixture problems. For exampl e, we can consider together missing
individuals, silent alleles and a mixed crime trace smply by piecing together the
appropriate modules.

The issue of silent alleles in a mixed trace arose in the celebrated case of
Peoplev. O. J. Simpson (LosAngeles County Case BA097211). AtVNTR marker
D2544, thecrimetrace showed athree-band profile ABC, thevictim had profile AC,
and the suspect had profile AB. The population allele frequencies are taken as
p,=0.0316, pg=0.0842, and p. = 0.0926 and the frequency of asilent allele as
p,, = 0.05. For this marker, Table 2 givesthe likelihoods (arbitrarily normalised to
sumto 1) based on anetwork which handles silent alleles and allowsfor up to two
unknown contributors. Results are shown both ignoring and alowing for silent
aleles, andalsofora“simplified” roughrulefor accountingfor silence, recommended
inthereport of theNational Research Council (1996), which replacesthefrequency
p? by the much larger quantity 2p.
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Table2: O. J. Simpson case: Likelihoodsfor hypotheses asto constitution of mixed trace,
for suspect s, victim v, and varying number of contributorsu (allowing for silent

alleles).
with silent allele
Hypothesis without silent exact 2prule
s&v&2u 0.0017 0.0039 0.0836
s& 2u 0.0015 0.0032 0.0598
v& 2u 0.0015 0.0031 0.0719
2u 0.0006 0.0008 0.0027
s&v&u 0.0392 0.0578 0.1886
s& u 0.0271 0.0340 0.0878
v&u 0.0253 0.0315 0.0805
s&v 0.9031 0.8657 0.4251

Note that the likelihood ratio in favour of H;: s& vagainst H: v & u, when
correctly accounting for asilent alele, is35.7, as compared to 5.3 based on the 2p
rule. This clearly shows that in this case the rule recommended by the National
Research Council isover-conservative. Without accounting for the possibility of a
silent allele the likelihood ratio is 27.5.

So far we have only used qualitativeinformation, namely which allelevalues
are present in the mixture and the other profiles. A more sensitive analysis
additionally uses measured “ peak areas’, which give quantitative information on
the amounts of DNA, by means of a Bayesian network (Cowell et al., 2007b).
Because the mixture proportion f r ac of DNA contributed by one of the partiesis
acommon quantity across markers, we must now handle them all simultaneously
within one “super-network”. Figure 6 shows the top level network for two
contributors, involving six markers, each an instance of a lower level network
mar ker asshowninFigure7. Thisnetwork isan extended version of theoneshown
in Figure 5, incorporating additional structure to model the quantitative peak area
information. In particular, the nodes Awei ght etc. in marker are instances of a
class network that models the quantitative information on the peak weight.

Cowell et al. (2006, 2007b) analyse the data shown in Table 3, taken from
Evettetal. (1998), involvinga6-marker mixed profilewith between 2 and 4 distinct
observed bands per marker, and a suspect whose profileiscontained inthese. It is
assumed that thisprofileisamixtureeither of the suspect and one other unobserved
contributor, or of two unknowns. Using only the repeat numbers as data, the
likelihood ratio for the suspect being acontributor to the mixtureiscal culated to be
around 25,000. On taking account of the peak areas aso, this rises to about
170,000,000.
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Figure 6: 6-marker OOBN for mixture using peak areas, 2 contributors (reproduced from
Cowell et al. (2004)).
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Table 3: Data for mixed trace with two contributors. The starred values are the suspect’s

alleles.
Marker D8 D18 D21
Alleles 10° 11 14 13’ 16 17 59 65 67 70
Peak area 6416 383 5659 | 38985 1914 1991 1226 1434 8816 8894
Marker FGA THO1 VWA
Alleles 21 27 23 g 9.3 16" 17 18 19
Peak area 16099 10538 1014 17441 22368 4669 931 4724 188

5.6 RECENT DEVELOPMENTS

Cowell etal. (2015) devel op astatistical model for thequantitativepeak information
obtained from an el ectropherogram of aforensic DNA samplewhichworksdirectly
with the peak height information, and allows the introduction of a threshold such
that the dropout of an aleleisinterpreted as failure for its associated peak to be
observed abovethethreshold. Another common artefact isstutter, whereby anallele
that ispresent inthesampleismis-copi ed at somestageintheamplification process.
Another artefactisknown asdropin, referring totheoccurrenceof small unexpected
peaks in the DNA amplification. This can for example be due to sporadic
contamination of a sample either at source or in the forensic laboratory. Current
technology allows for the amplification of very small amounts of DNA, even as
little as contained within one cell. In these cases many of these artefacts can occur.
These artefacts are simply represented in a coherent way in this model.

The parameters of the model, and their standard errors, are estimated by
maximum likelihood in the presence of multiple unknown contributors, exploiting
a Bayesian network representation for efficient computation. The model can
efficiently both find likelihood ratios for evidential calculations, and deconvolve
the mixtures for the purpose of finding likely profiles of one or more unknown
contributorsto a DNA mixture. It isreadily extended to simultaneous analysis of
more than one mixture where one can see that the combination of evidence from
several traces may give an evidential strength closeto that of asingle sourcetrace
and thus this modeling of peak height information provides for a very efficient
mixture analysis. A gamma model is used for the peak heights which is based on
Cowell et a. (2007a, 2011).

Recently Mortera et a. (2016) applied this model to analyse a complex
disputed paternity case, where the DNA of the putative father was extracted from
his corpse that had been inhumed for over 20 years. This DNA was contaminated
and appeared to beamixture of at least two individuals. Furthermore, the mother’s
DNA was not available. The DNA mixture was analysed so as to predict the most
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probable genotypes of each contributor. The major contributor’s profile was then
used to computethelikelihood ratio for paternity. We al so showed how to takeinto
account adropout allele and the possibility of mutation in paternity testing.

6. CONCLUSIONS

We hope we have stimulated the reader’s interest in the application of probability
and statistical reasoning to forensic science. There are many challenging logical
subtleties, ambiguities and probabilistic pitfallsin legal reasoning, some of which
wehaveillustrated. Someof theissuesarisinginthis context have valuablelessons
for other applications of statistics, such as confidentiality of census data (Skinner,
2007).

We have also aimed to show the usefulness of Bayesian networks for
representing and solving awidevariety of complex forensic problems. Bothgenetic
and non-geneticinformation can berepresentedin thesamenetwork. A particularly
valuable feature is the modular structure of Bayesian networks, which allows a
complex problem to be broken down into simpler structuresthat can then be pieced
back together in many ways, so allowing us to address a wide range of forensic
queries. | nparticular, using object-oriented Bayesian networkswehaveconstructed
a flexible computational toolkit, and used it to analyse complex cases of DNA
profileevidence, accounting appropriately for suchfeaturesasmissingindividuals,
mutation, silent alleles and mixed DNA traces.
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