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1. FORENSIC STATISTICS: THEN

In this first part of the paper we will review some historical cases where statistics
was first introduced in fact finding and identification issues concerning the law.

1.1 THE BEGINNINGS OF FORENSIC SCIENCE

The first recorded use of forensics in the solution of a crime comes from a Chinese
handbook for coroners called The Washing Away of  Wrongs, produced in 1247. One
of the many case studies it contains follows the investigation of a roadside stabbing.
The coroner examined the slashes on the victim’s body, then tested an assortment
of blades on a cow carcass. He concluded that the murder weapon was a sickle. But
knowing what caused the wounds was a long way from identifying whose hand had
wielded the blade, so he turned to possible motives. The victim’s possessions were
intact, which ruled out robbery. According to his widow, he had no enemies. The
best lead was the revelation that the victim hadn’t been able to satisfy a man who
had recently demanded the repayment of a debt.

The coroner accused the moneylender, who denied the charge. But, tenacious
as any TV detective, he ordered all 70 adults in the neighbourhood to stand in a line,
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their sickles at their feet. There were no visible traces of blood on any of the sickles.
But within seconds a fly landed enthusiastically on the moneylender’s blade,
attracted by minute traces of blood. A second fly followed, then another. When
confronted again by the coroner, the moneylender gave a full confession. He’d tried
to clean his blade, but his attempt at concealment had been foiled by the insect
informers humming quietly at his feet.

1.2 HANDWRITING IDENTIFICATION

Possibly one of the earliest uses of probabilistic reasoning in the analysis of forensic
identification evidence dates back to 1865 with the Howland will case. Sylvia Ann
Howland died in 1865, leaving roughly half her estate of some 2 million dollars to
various legatees, with the residue to be held in trust for the benefit of Hetty
Robinson, Sylvia Howland’s niece. Hetty claimed her right to inherit the entire
estate on the basis of an earlier will. The Executor contended that two of the three
signatures on the will Hetty provided were forged. In the ensuing case of Robinson
v. Mandell, Benjamin Peirce analysed the contested signature of Sylvia Ann
Howland on her will. He compared 30 downstrokes in the signature with
corresponding downstrokes from a different genuine signature. He showed that
under a binomial model this amount of agreement was highly improbable. He
showed that the number of overlapping downstrokes between two signatures
closely followed the binomial distribution, considering that each downstroke was
an independent event. When the admittedly genuine signature on the first page of
the contested will was compared with that on the second, all 30 downstrokes
coincided, suggesting that the second signature was a tracing of the first.

Benjamin Peirce took the stand and asserted that, given the independence of
each downstroke, the probability that all 30 downstrokes should coincide in two

genuine signatures was 
1

2.666 1021× . He assumed a probability of coincidence

roughly equal to 0.0227. He went on to observe “So vast improbability is practically
an impossibility. Such evanescent shadows of probability cannot belong to actual
life. They are unimaginably less than those least things which the law cares not for.
[omissis] The coincidence which has occurred here must have had its origin in an
intention to produce it. It is utterly repugnant to sound reason to attribute this
coincidence to any cause but design.”
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1.3 TALPIYOT TOMBS

In 1980, a burial tomb was unearthed in East Talpiyot neighbourhood of Jerusalem
containing ossuaries (limestone coffins) bearing inscriptions thought to be “Yeshua
son of Yehosef”, “Marya” and “Yoseh”; names which match those of New
Testament (NT) figures. However, these names were in common use at those times.
Feuerverger (2008) analyses the plausibility that the names inscribed on the
ossuaries match those of the New Testament (NT) figures. The evidence on which
the analysis is based is the distribution of names (onomasticon) in the era when the
tomb was dated, around 30 AD. Mortera and Vicard (2008) show an example of
how an object-oriented Bayesian network could have been used for evaluating the
weight of two pieces of identification inference relevant to the ossuary findings:
that from onomasticon together with that from DNA profiling of the bones found
in the named tombs.

1.4 FORENSIC IDENTIFICATION IN THE TALMUD

In the context of identification the Talmud law gives guidelines on objects whose
identity is unknown and reference is made to the likelihood that they derive from
a specific source in order to determine their legal status, i.e. whether they be
permitted or forbidden, ritually clean or unclean, etc. (Rabinovitch, 1969). For
example, only meat which has been slaughtered in the prescribed manner  is kasher,
i.e. permitted for food. In Hullin 11a the rule is “Follow the majority”, so when
finding, for example, a piece of unidentified meat and there are nine shops selling
kasher meat and only one not, then the meat can be eaten.

In the law of inheritance the Talmud evaluates the probability that a pregnant
woman whose husband dies will bear a live male child. This probability must be less
than one-half; as given in Yevamoth 119a: A minority [of pregnant women] miscarry
and of all the live births half are male and half female. Add the minority of those who
miscarry to the half who bear females and the males are in a minority.

A ruling of the 2nd century that states: (Yevamoth 64b): [A mother] had one
child circumcised and he died; a second one and he died; one must not circumcise
the third, shows that the independence assumption of certain events cannot be
assumed, unlike how the independence assumption was erroneously made in the
year 2000 in the Sally Clark case (a young woman wrongfully accused of murdering
her two babies, based on flawed probabilistic reasoning presented in court by a
pediatrician Professor Sir Roy Meadow). For further details on the Sally Clark case
see (http://www.sallyclark.org.uk), (http://www.statslab.
cam.ac.uk/~apd/SallyClark_report.doc).
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1.5 L’AFFAIRE DREYFUS

Alfred Dreyfus was born in 1859 in Mulhouse, then located in Alsace, into a
prosperous Jewish family. He left his native town for Paris in 1871 in response to
the annexation of the province by Germany following the Franco-Prussian War.

In 1894, while an artillery captain for the General Staff of France, Alfred
Dreyfus was suspected of providing secret military information to the German
government and was condemned to life imprisonment for espionage on Devil’s
Island.

Alphonse Bertillon was a witness for the prosecution in the Dreyfus affair in
1894 and again in 1899. (Bertillon founded the first laboratory for criminal
identification in France. He was head of the identification branch of the Préfecture
of Police. He applied anthropometry or Bertillonage to law enforcement and
created an identification system based on physical measurements as well as many
other forensic techniques). He testified as a handwriting expert and claimed that the
incriminating document (known as the “bordereau”) contained strong evidence
pointing to Dreyfus’s handrwriting, and where it differed the discrepencies were
deliberate. However, he was not a handwriting expert, and his convoluted and
flawed evidence was a significant contributing factor to one of the most infamous
miscarriages of justice. Using a complex system of measurements (based on
geometric transformations, probability calculus and military cryptography), he
attempted to prove that Dreyfus had disguised his handwriting and forged an
imitation of his own handwriting. Both courts martial accepted Bertillon’s analysis,
and Dreyfus was convicted. The verdict of the second court martial caused a huge
scandal, and it was eventually overturned.

“J’accuse…!” was an open letter published on in January 1898 in the
newspaper L’Aurore by the influential writer Émile Zola. In the letter, Zola
addressed the President of France, Félix Faure, and accused the government of anti-
semitism and the unlawful jailing of Alfred Dreyfus. Zola pointed out judicial errors
and lack of serious evidence. The letter was printed on the front page of the
newspaper and caused a stir in France and abroad. Zola was prosecuted for and
found guilty of libel on 23 February 1898. To avoid imprisonment, he fled to
England, returning home in June 1899.

Bertillon used the notion from military cryptography that coded messages are
often written using a “key” (here using the word intérêt) repeated many times. He
overlaid the bordereau on the “key” and saw that many letters matched, but many
did not. So he made a second almost identical key except for vertical lines set to be
the same distance apart as those of the bordereau. He now placed the bordereau first
over one and then over the other key, shifted over by one letter, and counted the
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letters e, n, r, t (the most frequent in French writing) that matched the same letters
in the word intérêt. He computed the expected values of the most frequent letters in
French writing, according to the frequency of their occurrence in the key. Now, the
bordereau contained about 800 letters and, for example, 60 were r’s, so one would
expect to find 1/7 (there being 1 r in the 7 letters of intérêt) of the r’s in the bordereau
lying over an r in the key, i.e. between 8 or 9 r’s. Whereas, Bertillon found 17.

In 1906, Dreyfus appealed his case again, to obtain the annulment of his guilty
verdict. The fallacy in Bertillon’s reasoning was revealed only then in the Court of
Appeal by three mathematicians, Poincaré, Appell and Darboux. They stated “If
one takes certain coincidences as evidence, and one shows that there had been a
priori few chances for those to happen, have we the right to conclude that they
cannot be the effect of chance?” Furthermore, they showed that by using two keys,
Bertillon was basically doubling the probability of coincidence of certain letters
being overlaid. The verdict was overturned and Dreyfus was also awarded the Cross
of the Légion d’Honneur, which stated, “a soldier who has endured an unparallelled
martyrdom.”

Charles M. F. W. Esterhazy was a commissioned officer in the French armed
forces and was a spy for the German Empire and the actual perpetrator of the act of
treason of which Captain Alfred Dreyfus was wrongfully accused and convicted.
When later comparing the writing of Esterhazy with the bordereau even Bertillon
stated that there was a perfect match.

Furthermore, Bertillon stated that there were four coincidences out of the 26
initial and final letters of the 13 repeated polysyllabic words in the document. He
evaluated the probability of an isolated coincidence as 0.2 and calculated a
probability of 0.24 = 0.0016 that four such coincidences would occur in normal
writing. But 0.24 is the probability of four coincidences out of four; that of four or
more out of 13 is some 400 times greater, approximately 0.7. For further details on
L’Affaire Dreyfus see Schneps and Colmez (2013).

2. FORENSIC STATISTICS: NOW

Legal applications of probabilistic and statistical reasoning have a long history,
some examples have been given in Section § 1. For an excellent overview of the
history of probabilistic reasoning in courts, see Zabell, (1988).

Forensic statistics is experiencing a period of rapid change because of the
tremendous evolution in DNA profiling, DNA database searching, cybersecurity
etc. DNA evidence has transformed the proof of identity in criminal litigation, but
it has also introduced daunting problems of statistical analysis into the process.
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Since the pioneering work of Jeffreys et al. (1985), genetic fingerprinting or DNA
profiling has become an indispensable tool for identification of individuals in the
investigative and judicial process associated with criminal cases, in paternity and
immigration cases, and in other contexts. Problems of forensic identification
from DNA evidence can become extremely challenging, both logically and
computationally, in the presence of complicating features such as missing data
on individuals, mixed DNA trace evidence, heterogeneous populations, mutation
etc. The features of probabilistic expert systems (PES) and Bayesian networks
(BNs) have been exploited to handle a wide variety of complex problems of
forensic identification such as: kinship analysis (Corradi and Ricciardi, 2013;
Corradi et al., 2003; Dawid et al., 2002a; Dawid et al., 2007; Vicard et al., 2008;
Green and Mortera, 2009; Aitken and Taroni, 2004; Taroni et al., 2010);
integrating forensic information from various sources (Taroni et al., 2014;
Biedermann et al., 2008; Garbolino and Taroni, 2002); identification of individuals
in DNA mixtures with models based on discrete allelic information (Mortera,
2003; Mortera et al., 2003; Lauritzen and Mortera, 2002) as well as continuous
gamma distributed peak height information (Cowell et al., 2006; Cowell et al.,
2007a; Cowell et al., 2011; Cowell et al., 2007b).

Besides the main applications in DNA evidence evaluation, i.e. inference of
source and relatedness testing as discussed in the previous paragraphs, Bayesian
networks have also been developed for the study of a variety of further topics that
gravitate around the evaluation of forensic analyses such as cross-transfer evidence
in criminal cases and error rates.

We do not suggest that judges and juries are likely to have (or should be
expected to acquire) a sophisticated understanding of probability or facility in
manipulating probabilities; nor that explicit probability arguments should become
routine in courts of law. In the previous sections we gave some historical cases
where incorrect probabilistic arguments were used in courts, leading to the
condemnation of innocent suspects.

Nowadays, there are however increasing numbers of cases – such as DNA
identification, or the Sally Clark case – where evidence about probabilities is clearly
relevant, and the court would stand to benefit from advice about how to handle them.

Sometimes – but all too rarely – there will be extensive relevant frequency
data, in the light of which all reasonable subjective probabilities for some event
should essentially agree with its observed relative frequency. In other cases all
parties may be willing to accept an expert witness’s assessments of some probabilities.
Yet other probabilities, relevant for the juror or other judicial decision-maker, will
be subject to subjective vagueness, although we will usually be able to distinguish
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between “reasonable” and “unreasonable” probability assessments. But even
where probability values can be agreed on, their correct handling is far from
obvious or intuitive, and fallacious intuitions, arguments and inferences abound.

3. PROBABILITY LOGIC

In a case at law, let ε  denote one or more items of evidence (perhaps its totality).
We need to consider how this evidence affects the comparison of the hypotheses,
H0 and H1 say, offered by either side. Thus in a criminal case with a single charge
against a single defendant, the evidence might be that the defendant’s DNA profile
matches one found at the crime scene; hypothesis H0, offered by the defence, is that
the defendant is innocent (G ); the prosecution hypothesis, H1, is that of guilt (G).

The adjudicator needs to assess his or her conditional probability for either
hypothesis, given the evidence: Pr(H0 | ε ) and Pr(H1 | ε ). However, it will not usually
be possible to assess these directly, and they will have to be constructed out of other,
more basic, ingredients. In particular, it will often be reasonable to assess directly
Pr(ε | H0) and Pr(ε | H1): the probability that the evidence would have arisen, under
each of the competing scenarios.

Bayes’s theorem – a trivial consequence of the definition of conditional
probability probability – tells us that

Pr

Pr

Pr

Pr

Pr

Pr

1

0

1

0

1

0

H

H

H

H

H

H

ε

ε

ε

ε
( )
( ) =

( )
( ) ×

( )
( ) . (1)

The left-hand side of (1) is the posterior odds for comparing H1 and H0, given
the evidence ε: this is a simple transformation of Pr(H1 | ε ), the desired posterior
probability of H1.

The second term on the right-hand side of (1) is constructed out of the directly
assessed terms Pr(ε  | H0) and Pr(ε  | H1): it is the likelihood ratio (for H1, as against
H0) engendered by the evidence ε . It is noteworthy that only the ratio of these terms
enters, their absolute values being otherwise irrelevant.

To complete (1) we need the term Pr(H1)/Pr(H0), the prior odds for comparing
H1 and H0 (i.e., before the evidence ε  is incorporated). This might reasonably vary
from one individual juror to another, so that it would not be appropriate to treat it
as a subject for direct evidence. For this reason forensic experts are often instructed
to give their evidence in the form of a likelihood ratio, it being left to the adjudicator
to combine this appropriately with the prior assessment, using (1).
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We can express (1) in words as:

POSTERIOR ODDS = PRIOR ODDS × LIKELIHOOD RATIO.

When ε  denotes all the evidence in the case, all the probabilities in (1) are
unconditional; in particular, the prior odds should be assessed on the basis that there
is no evidence to distinguish the suspect from any other potential suspect – this can
be regarded as one way of formalising the legal doctrine of “presumption of
innocence” (which of course is not the same as an assumption of innocence). When
ε denotes a piece of evidence presented in mid-process, all the probabilities in (1)
must be conditioned on the evidence previously presented: in particular, the “prior”
probabilities could themselves have been calculated using (1), as posterior
probabilities based on earlier evidence.

Notwithstanding the unarguable correctness of (1), it is often replaced by
other, more “intuitive”, probabilistic arguments, that can be very misleading.

3.1 THE PROSECUTOR’S FALLACY

In a criminal trial, an item of evidence ε may be offered in proof of the guilt, G, of
a defendant S, on the basis that the probability of ε would be very low if S were not
guilty (G ). For example, in the trial of Sally Clark for double infanticide (Dawid,
2005; Dawid, 2008), an expert medical witness testified that the probability that
both her babies would have died from natural causes was one in 73 million.1 If, as
appears very natural, we describe this figure as “the probability that the babies died
by innocent means” it is all too easy to misinterpret this as as the probability (on the
basis of the evidence of the deaths) that Sally is innocent – such a tiny figure seeming
to provide incontrovertible proof of her guilt. Mathematically, this is equivalent to
misinterpreting Pr(ε | G ) as Pr(G  | ε). For obvious reasons this error is known as
“transposing the conditional”, or, because it typically produces seemingly convincing
evidence of guilt, “the prosecutor’s fallacy” (Thompson and Schumann, 1987).

The prosecutor’s fallacy is a seductive and widespread mode of reasoning,
affecting the general public, the media, lawyers, jurors and judges alike. Although
we do not have access to the deliberations of Sally Clark’s jury, it has generally been
considered that their “Guilty” verdict was strongly influenced by such mistaken
reasoning.

1 This figure has itself been widely and properly criticised, but that is not the issue here.
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3.2 FORENSIC IDENTIFICATION

A particularly fertile field where the prosecutor’s fallacy flourishes is that of
identification evidence. Here, unlike the case for Sally Clark, it is undisputed that
a crime has been committed: the issue before the court is whether or not the
suspect, S, is indeed the culprit, C. Thus the hypothesis G of guilt is equivalent to
that of identity, C = S. Evidence ε is presented which bears on this. This may be,
for example, eye-witness evidence (as in the celebrated “Collins case” (Fairley and
Mosteller, 1977), which kick-started modern interest in the interpretation of
probabilities in the law), or forensic evidence of a match between some characteristic
of the crime scene (the “crime trace”) and a similar characteristic measured on the
suspect. Examples include handwriting, rifling marks on bullets, glass fragments,
fibres, footprints, fingerprints, bitemarks, and, of especial importance and power,
DNA profiles. It is common in such a case for the jury to be told something like “The
probability of this DNA match arising from an innocent man is only one in one
billion”, and for all parties to misinterpret this number, in line with the prosecutor’s
fallacy, as the probability of S’s innocence.

3.3 DATABASE SEARCH

Search scenarios are common in cases where a DNA trace is found at the crime
scene and, in the absence of any obvious suspect, a search for a match is made
through a police database of DNA profiles.

Computerised search typically allows us to identify every individual in the
database whose DNA profile matches the crime trace. Let P denote the initial
probability that an individual matches, independently for different individuals.
Suppose that there is exactly one such individual, S. If the initial suspect population
is of size N + 1 and the database is of size n + 1, then the search has eliminated n
individuals from the suspect population and so, if there is no other evidence to
distinguish among those remaining, the odds on S being guilty are increased from
1/NP to 1/(N – n)P. (If there is other evidence for or against S, this could be
expressed as a likelihood ratio, and combined with the above odds using Bayes’s
theorem. It is also possible to account for evidence pointing the finger towards or
away from other individuals.)

When n is small in relation to N the effect of the database search is only a small
increase in the probability that S is guilty. This is fortunate, since evidence that a
search was conducted to identify the suspect is usually inadmissible in court.
Ignoring it will typically make little difference, and to the extent that it does it will
be to the advantage of the defendant.

However at the other extreme, where the whole population is searched (n = N)
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and S is the only individual found to match, we obtain infinite odds, corresponding
to certainty, that S is guilty – as is obviously appropriate in this case.

4. FORENSIC GENETICS

Most of the logic so far presented applies in principle to any kind of identification
evidence. But forensic DNA evidence has some additional special features,
principally owing to its pattern of inheritance from parent to child. These make it
possible to use it to address queries such as the following:

Disputed paternity: Is individual A the father of individual B?

Disputed inheritance: Is A the daughter of deceased B?

Immigration: Is A the mother of B? How is A related to B?

Criminal case: mixed trace: Did A and B both contribute to a stain found at the
scene of the crime? Who contributed to the stain?

Disasters: Was A among the individuals involved in a disaster? Who were those
involved?

In a simple disputed paternity case, the evidence ε will comprise DNA profiles
from mother, child and putative father. Hypothesis H1 is that the putative father is
the true father, while hypothesis H0 might be that the true father is some other
individual, whose DNA profile can be regarded as randomly drawn from the
population. We can also entertain other hypotheses, such as that one of one or more
other identified individuals is the father, or that the true father is the putative father’s
brother.

In a complex criminal case, we might find a stain at the scene of the crime
having the form of a mixed trace, containing DNA from more than one individual.
DNA profiles are also taken from the victim and a suspect. We can entertain various
hypotheses as to just who – victim? – suspect? – person or persons unknown? –
contributed to the mixed stain.

When we are only comparing two hypotheses H0 and H1, the impact of the
totality of the DNA evidence ε  available, from all sources, is once again crystallised
in the likelihood ratio, LR = Pr(ε | H1)/Pr(ε | H0). If we wish to compare more that
two hypotheses, we require the full likelihood function, a function of the various
hypotheses H being entertained (and of course the evidence ε ):

lik(H ) ∝  Pr(ε | H). (2)

The proportionality sign in (2) indicates that we have omitted a factor that does
not depend on H , although it can depend on ε . Such a factor is of no consequence
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and need not be specified, since it disappears on forming ratios of likelihoods for
different hypotheses on the same evidence. Only such relative likelihoods are
required, not absolute values.

We also now need to specify the prior probabilities, Pr(H ), for the full range
of hypotheses H. Then posterior probabilities in the light of the evidence are again
obtained from Bayes’s theorem, which can now be expressed as:

Pr(H | ε ) ∝  Pr(H) ×  lik(H). (3)

 Again the omitted proportionality factor in (3) does not depend on H,
although it might depend on ε. It can be recovered, if desired, as the unique such
factor for which the law of total probability, ∑H Pr(H | ε )=1, is satisfied.

4.1 GENETIC BACKGROUND

To proceed further we need some basic genetic facts about DNA profiles, which we
summarise very briefly below: for more details see e.g. Butler (2005).

A gene is a particular sequence of the four bases, represented by the letters A,
C, G and T, that carry the genetic information in DNA. A specific position on a
chromosome is called a locus; since chromosomes come in pairs, there are two
genes at any locus.  A DNA profile consists of measurements on a number of
forensic markers, which are specially selected loci, on different chromosomes.
Current technology uses around 12–20 short tandem repeat (STR) markers. Each
such marker has a finite number (up to around 20) of possible values, or  alleles,
generally positive integers. For example, an allele value of 5 indicates that a certain
word (e.g. CAGT) in the 4-letter alphabet of the genetic code is repeated exactly 5
times in the DNA sequence at that locus on a chromosome.

An individual’s DNA profile comprises a collection of genotypes, one for each
marker. Each genotype consists of an unordered pair of alleles, one inherited from
the father and one from the mother (though one cannot distinguish which is which).
When both alleles are identical the individual is homozygous at that marker, and
only a single allele value is observed; else the individual is heterozygous. In most
cases a DNA profile can be measured without error, even from a single cell.

Assuming Mendelian segregation, at each marker a parent passes a copy of
just one of his two alleles, randomly chosen, to his or her child, independently of
the other parent and independently for each child. Distinct forensic markers are
located on different chromosomes, so segregate independently. It is often reasonable
to assume random mating within an appropriate population, which then implies
independence of alleles both within markers (Hardy-Weinberg equilibrium) and
across markers (linkage equilibrium). Databases have been gathered from which
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allele frequency distributions, for various populations, can be estimated for each
forensic marker. On the basis of these values and the independence assumptions,
a profile probability can be assigned to any DNA profile, measuring its rarity in the
population.2

4.2 SIMPLE DISPUTED PATERNITY

A man is alleged to be the father of a child, but disputes this. DNA profiles are
obtained from the mother m, the child c, and the putative father pf. On the basis of
these data, we wish to assess the likelihood ratio for the hypothesis of paternity: H1:
tf=pf, the true father is the putative father; as against that of non-paternity: H0:
tf=af, where af denotes an unspecified alternative father, treated as unrelated to
pf  and randomly drawn from the population.

The disputed pedigree can be represented as in Figure 1.

2 Although we do not develop this here, one should really allow for the fact that allele
frequency estimates based on finite databases remain uncertain. This raises some subtle new
issues (Balding and Nichols, 1994; Dawid and Mortera, 1996; Green and Mortera, 2009).

Figure 1: Pedigree for simple disputed paternity.

m
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Because of our independence assumptions, we can analyse the markers one
at a time, finally multiplying their associated likelihood ratio values together to
obtain the overall likelihood ratio based on the full collection of markers.

Consider now the measured genotypes, from all three parties, for some fixed
marker. Under paternity, H1, we just apply Mendel’s laws of segregation; under
non-paternity, H0 we require (estimates of) the frequencies of relevant marker
alleles among the population. Using (1) this can then be combined with the prior
odds of paternity, based on external background evidence B, in order to obtain the
posterior odds for paternity. As an illustrative example, suppose that the data, for
marker D7, are: child’s genotype cgt = {12, 12}, mother’s genotype mgt = {10,
12}, putative father’s genotype pfgt= {10, 12}. The estimated population
frequencies of alleles 10 and 12 are, respectively, 0.284 and 0.260. In this case,
conditioning on the genotypes of mother and putative father (which makes no
difference to the answer), we see that the child’s genotype will be as observed if and
only if both the mother and the true father contributed allele 12 to the child. This
event has probability 0.5 × 0.5 if the true father is the putative father, and probability
0.5 × 0.260 if the true father is, instead, some unrelated individual from the
population. Thus the likelihood ratio in favour of paternity, based on marker D7
alone, is 1.93.

4.3 DNA MIXTURES

A mixed DNA profile is typically obtained from an unidentified biological stain or
other trace thought to be associated with a crime. This commonly occurs in rape
cases, in robberies where an object might have been handled by more than one
individual, and also in a scuffle or brawl. For a mixed DNA trace there is no
constraint on the number of distinct alleles observed for each marker, since the trace
might have been formed as a mixture of biological material from more than one
person.

In simple cases of DNA mixtures when using only the qualitative allele
information, algebraic formulae for calculating the likelihoods of all hypotheses
involving a specified set of known and unknown contributors to the mixture can be
computed (assuming Hardy-Weinberg equilibrium and known allele frequencies).

To illustrate, suppose that, for a single DNA marker, we have a three-allele
crime trace {A, B, C}, and individual profiles from a victim, v = {B, C}, and a
suspect, s = {A}. These together with the allele frequencies constitute the evidence
ε for the case. Suppose we wish to compute the likelihood ratio in favour of the
hypothesis that the victim and suspect contributed to the mixture: H1: v & s, as
against the hypothesis that the victim and an unknown individual u contributed to
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the mixture: H0: v & u. It is not difficult to show that in this case the LR is

LR ,=
+ +

1

2 22p p p p p
A A B A C

(4)

where pi is the frequency of allele i in the population.

5. BAYESIAN NETWORKS FOR FORENSIC DNA IDENTIFICATION

In more complex scenarios than those described above it can become difficult or
impossible to obtain the required probabilistic formulae.

In cases of disputed paternity it commonly occurs that the DNA profiles of one
or more of the “principal actors” in the pedigree are not available; but there is
indirect evidence, in the form of DNA profiles of various known relatives. In § 5.5
below we consider such a case, where the putative father is unavailable for testing,
but we have DNA from two of his brothers and an undisputed child of his by another
woman. The analysis of all the data is clearly now much more complex. Likewise
the appropriate extensions of (4) become relatively complex when the number of
potential contributors to the mixture becomes large; or if we want to use quantitative
data (peak areas), which contain important additional information about the
composition of the mixture; or to allow for uncertainty in allele frequencies and/or
population substructure.

To handle such cases sophisticated probabilistic modelling tools are required.
Again, Bayesian networks, together with their associated computational
methodology and technology, have been found valuable for this, particularly in
their “object-oriented” (OOBN) form, as implemented in commercial software
such as Hugin 6 3. Bayesian networks for evaluating DNA evidence were introduced
by Dawid et al. (2002). Further description and developments can be found in
Mortera (2003); Mortera et al. (2003); Vicard et al. (2004); Cowell et al. (2004);
Dawid et al. (2006); Dawid et al. (2007); Taroni et al. (2006).

For some illustrative cases, we describe below how we can construct a suitable
OOBN representation of a complex DNA identification problem, incorporating all
the individuals involved and the relationships between them.

5.1 SIMPLE DISPUTED PATERNITY

We use the example in § 4.2 of simple disputed paternity to introduce some basic
ingredients of forensic OOBNs.

3 Obtainable from www.hugin.com
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In fact Figure 1 is just the relevant “top-level” network, constructed using the
graphical interface to HUGIN 6. Each node (except the hypothesis node tf=pf?) in
Figure 1 is itself an “instance” of another generic (“class”) network, with further
internal structure. In what follows, bold face will indicate a network class, and
teletype face will indicate a node or instance. We describe only selected features
here. A fuller description of OOBN networks for paternity casework can be found
in Dawid et al. (2007); Dawid et al. (2006).

Each of m, pf and af is an instance of a class founder, while c is an instance
of class child and tf is an instance of class query.

Within founder (not shown) we have two instances (maternal and paternal
genes) of a class gene which embodies the relevant repertory of alleles and their
associated frequencies in the relevant population.

The internal structure of child is displayed in Figure 2.

On the paternal (left-hand) side of child, the input nodes fpg and fmg
represent the child’s father’s paternal and maternal genes. These are then copied
into nodes pg and mg of an instance fmeiosis of a class network meiosis, whose
output node cg is obtained by flipping a fair coin (node cg=pg?) to choose
between pg and mg; this is then copied to pg (child’s paternal gene) in network
child. A similar structure holds for the maternal (right-hand) side of child. Finally
pg and mg are copied into an instance gt of a network class genotype, which
forgets the information on parental origin (this is also a feature of founder). Any
DNA evidence on the individual is entered here.

Figure 2: Networks child and meiosis.
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The hypothesis node tf=pf? embodies H1 (tf=pf) when it takes the value
true and H0 (tf=af) when false; it feeds into the instance tf of class query to
implement this selection. We initially, and purely nominally, set both hypotheses
as equally probable, so that, after propagation of evidence, the ratio of their
posterior probabilities yields the paternity ratio based on this marker. By entering
the data for each marker into the appropriate Bayesian network, we can thus
easily calculate the associated likelihood ratio for paternity.

We build a separate such network for each STR marker, incorporating the
appropriate repertoire of alleles and their frequencies. On entering the available
DNA data, we can compute the associated likelihood ratio. Finally we multiply
these together across all markers to obtain the overall likelihood ratio.

Once supplied with the basic building blocks founder, child and query, we
can connect them together in different ways, much like a child’s construction set,
to represent a wide range of similar problems. An illustration is given in the next
section.

5.2 COMPLEX DISPUTED PATERNITY

Figure 3 is a OOBN representation of a disputed paternity case where we have DNA
profiles from a disputed child c1 and from its mother m1, but not from the putative
father pf. We do however have DNA from c2, an undisputed child of pf by a
different, observed, mother  m2, as well as from two undisputed full brothers b1 and
b2 of pf. The sibling relationship is made explicit by the incorporation of the
unobserved grandfather gf and grandmother gm, parents of pf, b1 and b2. The
“hypothesis node” tf=pf? again indicates whether the true father tf is pf, or is
an alternative father af, treated as randomly drawn from the population.

Figure 3: Pedigree for incomplete paternity case.

m1c2

m2
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Nodes gf, gm, m1, m2 and af are all instances of class founder; pf, b1, b2,
c1 and c2 are instances of class child; tf is an instance of class query.

The DNA evidence ε consisted of the 6 DNA profiles, each comprising 10
STR markers, from m1, m2, c1, c2, b1 and b2. By entering the data for each
marker into the Bayesian network (incorporating the appropriate alleles for that
marker and their frequencies), we can thus easily calculate the associated likelihood
ratio for paternity. The overall paternity ratio is then given by their product.

For this particular case this overall paternity ratio evaluates to around 1300,
meaning that the observed DNA evidence is 1300 times more probable on the
hypothesis of paternity than it would be were we to assume non-paternity.
According to Evett and Weir (1998), such a value might be considered as offering
“very strong support” to the hypothesis of paternity (although paternity applications
such as this will never produce the kind of likelihood ratio value, sometimes in the
billions, that can occur when DNA profiling evidence is used to match a suspect to
a crime). However it is important to remember, in all cases, that the likelihood ratio
derived from the DNA evidence is only one element of the whole story, which also
involves prior probabilities, and perhaps further likelihood ratios based on other
evidence in the case. All these ingredients need to be combined appropriately, using
Bayes’s theorem, to produce the final probability of paternity.

5.3 MUTATION

It is easy to modify these networks to incorporate a variety of additional complications.
One such is the possibility of mutation of genes in transmission from parent to child,
which could lead to a true father appearing to be excluded (Dawid et al., 2001;
Dawid et al., 2003; Dawid, 2003; Vicard and Dawid, 2004; Vicard et al., 2004). We
must now distinguish between a child’s original gene cog, identical with one of
the parent’s own genes, and the actual gene cag available to the child, which may
differ from cog because of mutation. We elaborate the class network meiosis of
Figure 2, as shown in Figure 4, by passing its original output cog (“child’s original
gene”) through an instance cag (“child’s actual gene”) of a new network mut,
constructed to implement whatever model is used to describe how the value of cog
is stochastically altered by mutation. The output of cag is then copied to cg. Thus
meiosis now represents the result of mutation acting on top of Mendelian segregation.

Once an appropriate network mut has been built, and meiosis modified as
described above, pedigree networks constructed as in Sections 5.1 or 5.2 will now
automatically incorporate the additional possibility of mutation.
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5.4 SILENT ALLELES

Yet another complication that is easily handled by simple modifications to lower-
level networks is the possibility that some alleles may not be recorded by the
equipment, so that a truly heterozygous genotype appears homozygous (Dawid et
al., 2007; Dawid et al., 2006). This may be due to sporadic equipment failure, in
which case it is not inherited and we talk of a missed allele; or to an inherited
biological feature, in which case we refer to the allele as silent.

In some cases, making proper allowance for these possibilities can have a
dramatic effect. Table 1 shows results for a particular case where, in addition to the
genotypes mgt, pfgt and cgt of mother, putative father and child, we also have
the genotype bgt of the putative father’s brother. These refer to the single STR
marker vWA.

If we had complete data on the genotypes mgt, pfgt and cgt, the additional
data bgt would have no impact whatsoever on the paternity ratio, since the child’s
genotype is conditionally independent of information on the putative father’s
brother given the mother and putative father’s genotypes. In the case shown, in the
absence of silence we would have an exclusion. Allowing for silence at various
rates, but using only the data on the basic family triplet, gives the paternity ratios
in the column labelled LD, from which we already see that a small probability of
silence can in fact lead to a paternity ratio greater than 1 – now constituting evidence
in favour of paternity. The remaining columns show the additional (multiplicative)
effect of using the information on the brother’s genotype bgt, for various cases.
The first row shows that, even as the probability of silence tends to 0, its disturbing
effect can be very substantial. In fact when bgt={12, 12}, the overall paternity ratio
LR = LD × LB achieves a maximum value of 1027.3, at pr(silent) = 0.0000642,
even though it vanishes for pr(silent) = 0.

Figure 4: Revised network meiosis, incorporating mutation.
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5.5 BAYESIAN NETWORKS FOR ANALYSING MIXED DNA PROFILES

Bayesian networks have also been constructed to address the challenging problems
that arise in the interpretation of mixed trace evidence. Typically one would be
interested in testing whether the victim and suspect contributed to the mixture, H1:
v & s, against the hypothesis that the victim and an unknown individual contributed
to the mixture, H0: v & u. One might alternatively consider an additional unknown
individual u2 instead of the victim, with hypotheses H1: u2 & s versus H0: u2 & u1.

Figure 5 shows a top-level network which can be used for analysing a mixture
with two contributors, p1 and p2. Nodes sgt, vgt, u1gt and u2gt are all
instances of a network class genotype and represent the suspect’s, the victim’s and
two unknown individuals’ genotypes. Boolean node  p1=s? represents the hypothesis
that contributor p1 is the suspect s. Node p1gt, the genotype of p1, is an instance
of a network query which selects between the two genotypes sgt or u1gt
according to the true/false state of the Boolean node p1=s?. A similar relationship
holds between nodes p2gt, vgt, u1gt and p1=v?. Possible genotype information
on the suspect and/or the victim is entered and propagated from nodes sgt and
vgt. The target node is the logical combination of the two Boolean nodes p1=s?
and p2=v? and represents the four different hypotheses described above. Ainmix?
determines whether allele A is in the mixture: this will be so if at least one A allele
is present in either p1gt or p2gt. Similarly for Binmix?, Cinmix?, Dinmix?
and xinmix? (where x refers to all of the alleles that are not observed).
Information on the alleles seen in the mixture is entered and propagated from these
nodes.

The modular structure of Bayesian networks supports easy extension to
mixtures with more contributors, as in cases where a rape victim declares that she
has had one consensual partner in addition to the unidentified rapist, or that she has
been victim of multiple rape. Simple modification of the network handles such
scenarios, so long as the total number of contributors can be assumed known.

Table 1: Disputed paternity with brother too. mgt= {12, 15}, pfgt= {14, 14}, cgt= {12, 12}.
Likelihood ratio in favour of paternity allowing for silent alleles: LD, without
brother’s genotype. LB, further (multiplicative) effect of brother’s genotype.

LB with bgt =
pr(silent) LD {16, 20} {12, 17} {12, 14} {14, 17} {14, 14} {16, 16} {12, 12}

0 0 1 1 0.546 0.546 1.0000 6.12 1595
0.000015 0.472 1 1 0.546 0.546 0.9999 6.07 403.7
0.0001 2.473 1 1 0.546 0.546 1 6.13 3334
0.001 7.485 1 1 0.551 0.551 0.9992 5.54 46.07
0.01 8.100 1 1 0.590 0.590 0.9932 3.19 5.45
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In general, however, although the evidence of the trace itself will determine
a lower bound to this total, there is in principle no upper bound. Thus if in a trace
we see that the maximum number of alleles in any marker is three, we know that
the minimum number of contributors that could have produced this trace is two, but
we can not be sure that there were only two. However it is often possible to set a
relatively low upper limit to the number it is reasonable to consider. We allow, as
contributors to the mixture, persons with known DNA profiles, such as the victim
and suspect, and possibly also unknown individuals. Each of the various hypotheses
H we might consider will involve a specification, x, for the number of unknown
contributors. Although not strictly necessary, for extra clarity we write Prx(ε | H )
for the probability of the evidence under this hypothesis. Thus the likelihood ratio
LR needed to evaluate the DNA evidence ε – comprising the DNA profiles of the
victim, the suspect and the mixed trace – in favour of a hypothesis H1 against an
alternative hypothesis H0 is

LR ,=
( )
( )

Pr

Pr
1

0

1

0

x

x

H

H

ε

ε

where xi denotes the number of unknown individuals involved in the hypothesis Hi.
When computing the weight of evidence one should give the defendant the

benefit of any doubt or uncertainty, and so present the most favourable reasonable
scenario for the defence. This implies that we should seek and use a lower bound
for the value of the LR as we vary our assumptions within reasonable limits. And
this, in turn, requires that we use an upper limit for the number of unknown
contributors it is reasonable to consider. If the evidence is incriminating even in this
most favourable case, it will be even more so for a larger number of unknown
contributors.

Figure 5: Bayesian network for DNA mixture from two contributors.
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To aid in setting such an upper limit we can use the fact that Prx(ε | H ) can be
no larger than the probability that all the alleles of the x unknown contributors are
in the mixed trace. This implies (Lauritzen and Mortera, 2002):

Pr
x m

x

m

M

H kε( ) ≤
=

∏ 2

1

where, for each marker m, km is the total probability that a randomly chosen allele
will be one of those seen in the mixed trace. From this it follows that, if H0 is any
alternative hypothesis yielding likelihood L0, we need not consider an alternative
hypothesis H with more than b(L0) unknown contributors, where

b y
y

k
mm

M( ) =
=∑

ln

ln2
1

since that would yield a likelihood smaller than L0.
Once it has been agreed to limit attention to some maximum total number of

potential contributors, cases where the number of unknown contributors is itself
uncertain can again be addressed using a Bayesian network, now including nodes
for the number of unknown contributors and the total number of contributors
(Mortera et al., 2003). This can be used for computing the posterior distribution of
the total number of contributors to the mixture, as well as likelihood ratios for
comparing all plausible hypotheses.

The modular structure of the Bayesian networks can be used to handle still
further complex mixture problems. For example, we can consider together missing
individuals, silent alleles and a mixed crime trace simply by piecing together the
appropriate modules.

The issue of silent alleles in a mixed trace arose in the celebrated case of
People v. O. J. Simpson (Los Angeles County Case BA097211). At VNTR marker
D2S44, the crime trace showed a three-band profile ABC, the victim had profile AC,
and the suspect had profile AB. The population allele frequencies are taken as
pA = 0.0316,  pB = 0.0842, and  pC = 0.0926 and the frequency of a silent allele as
pn = 0.05. For this marker, Table 2 gives the likelihoods (arbitrarily normalised to
sum to 1) based on a network which handles silent alleles and allows for up to two
unknown contributors. Results are shown both ignoring and allowing for silent
alleles, and also for a “simplified” rough rule for accounting for silence, recommended
in the report of the National Research Council (1996), which replaces the frequency
p2 by the much larger quantity 2p.
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Table 2: O. J. Simpson case: Likelihoods for hypotheses as to constitution of mixed trace,
for suspect s, victim v, and varying number of contributors u (allowing for silent

alleles).

with silent allele
Hypothesis without silent exact 2p rule

s & v & 2u 0.0017 0.0039 0.0836
s & 2u 0.0015 0.0032 0.0598
v & 2u 0.0015 0.0031 0.0719
2u 0.0006 0.0008 0.0027
s & v & u 0.0392 0.0578 0.1886
s & u 0.0271 0.0340 0.0878
v & u 0.0253 0.0315 0.0805
s & v 0.9031 0.8657 0.4251

Note that the likelihood ratio in favour of H1: s & v against H0: v & u, when
correctly accounting for a silent allele, is 35.7, as compared to 5.3 based on the 2p
rule. This clearly shows that in this case the rule recommended by the National
Research Council is over-conservative. Without accounting for the possibility of a
silent allele the likelihood ratio is 27.5.

So far we have only used qualitative information, namely which allele values
are present in the mixture and the other profiles. A more sensitive analysis
additionally uses measured “peak areas”, which give quantitative information on
the amounts of DNA, by means of a Bayesian network (Cowell et al., 2007b).
Because the mixture proportion frac of DNA contributed by one of the parties is
a common quantity across markers, we must now handle them all simultaneously
within one “super-network”. Figure 6 shows the top level network for two
contributors, involving six markers, each an instance of a lower level network
marker as shown in Figure 7. This network is an extended version of the one shown
in Figure 5, incorporating additional structure to model the quantitative peak area
information. In particular, the nodes  Aweight etc. in marker are instances of a
class network that models the quantitative information on the peak weight.

Cowell et al. (2006, 2007b) analyse the data shown in Table 3, taken from
Evett et al. (1998), involving a 6-marker mixed profile with between 2 and 4 distinct
observed bands per marker, and a suspect whose profile is contained in these. It is
assumed that this profile is a mixture either of the suspect and one other unobserved
contributor, or of two unknowns. Using only the repeat numbers as data, the
likelihood ratio for the suspect being a contributor to the mixture is calculated to be
around 25,000. On taking account of the peak areas also, this rises to about
170,000,000.



Forensic identification then and now 167

Figure 7: Network marker with three observed allele peaks.

Figure 6: 6-marker OOBN for mixture using peak areas, 2 contributors (reproduced from
Cowell et al. (2004)).

xweightCweightBweightAweight

sgt vgt
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5.6 RECENT DEVELOPMENTS

Cowell et al. (2015) develop a statistical model for the quantitative peak information
obtained from an electropherogram of a forensic DNA sample which works directly
with the peak height information, and allows the introduction of a threshold such
that the dropout of an allele is interpreted as failure for its associated peak to be
observed above the threshold. Another common artefact is stutter, whereby an allele
that is present in the sample is mis-copied at some stage in the amplification process.
Another artefact is known as dropin, referring to the occurrence of small unexpected
peaks in the DNA amplification. This can for example be due to sporadic
contamination of a sample either at source or in the forensic laboratory. Current
technology allows for the amplification of very small amounts of DNA, even as
little as contained within one cell. In these cases many of these artefacts can occur.
These artefacts are simply represented in a coherent way in this model.

The parameters of the model, and their standard errors, are estimated by
maximum likelihood in the presence of multiple unknown contributors, exploiting
a Bayesian network representation for efficient computation. The model can
efficiently both find likelihood ratios for evidential calculations, and deconvolve
the mixtures for the purpose of finding likely profiles of one or more unknown
contributors to a DNA mixture. It is readily extended to simultaneous analysis of
more than one mixture where one can see that the combination of evidence from
several traces may give an evidential strength close to that of a single source trace
and thus this modeling of peak height information provides for a very efficient
mixture analysis. A gamma model is used for the peak heights which is based on
Cowell et al. (2007a, 2011).

Recently Mortera et al. (2016) applied this model to analyse a complex
disputed paternity case, where the DNA of the putative father was extracted from
his corpse that had been inhumed for over 20 years. This DNA was contaminated
and appeared to be a mixture of at least two individuals. Furthermore, the mother’s
DNA was not available. The DNA mixture was analysed so as to predict the most

Table 3: Data for mixed trace with two contributors. The starred values are the suspect’s
alleles.

Marker D8 D18 D21

Alleles 10* 11 14* 13* 16 17 59 65 67* 70*

Peak area 6416 383 5659 38985 1914 1991 1226 1434 8816 8894

Marker FGA THO1 VWA

Alleles 21* 22* 23 8* 9.3* 16* 17 18* 19

Peak area 16099 10538 1014 17441 22368 4669 931 4724 188
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probable genotypes of each contributor. The major contributor’s profile was then
used to compute the likelihood ratio for paternity. We also showed how to take into
account a dropout allele and the possibility of mutation in paternity testing.

6. CONCLUSIONS

We hope we have stimulated the reader’s interest in the application of probability
and statistical reasoning to forensic science. There are many challenging logical
subtleties, ambiguities and probabilistic pitfalls in legal reasoning, some of which
we have illustrated. Some of the issues arising in this context have valuable lessons
for other applications of statistics, such as confidentiality of census data (Skinner,
2007).

We have also aimed to show the usefulness of Bayesian networks for
representing and solving a wide variety of complex forensic problems. Both genetic
and non-genetic information can be represented in the same network. A particularly
valuable feature is the modular structure of Bayesian networks, which allows a
complex problem to be broken down into simpler structures that can then be pieced
back together in many ways, so allowing us to address a wide range of forensic
queries. In particular, using object-oriented Bayesian networks we have constructed
a flexible computational toolkit, and used it to analyse complex cases of DNA
profile evidence, accounting appropriately for such features as missing individuals,
mutation, silent alleles and mixed DNA traces.
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