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Abstract Multivariate continuous data are becoming more prevalent in forensic science.
Available databases may present a complex dependence structure, with several variables
and several levels of variation. The assessment of the value of evidence can be performed
by the derivation of a likelihood ratio, a rigorous concept that measures the change pro-
duced by a given item of information in the odds in favour of a proposition as opposed
to another, when going from the prior to the posterior distribution. The derivation of a
likelihood ratio may be a demanding task, essentially because of the complexity of the
scenario at hand and the possible poor information at the forensic examiner’s disposal.
This opened the door in the forensic community to a large debate about what should be
the most appropriate way to take charge of uncertainty while presenting expressions of
evidential value at trial. These ideas will be illustrated with reference to a comparative
handwriting scenario.
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1. INTRODUCTION

In forensic science, statistical methods are currently largely used for assessing

the probative value of criminal traces, such as DNA or other recovered materi-

als. Decades ago, discussions about this topic were less structured and formalized

than they are today, and the diversity of opinion could be substantial. Today, the

evaluation of measurements on characteristics associated to trace evidence when

a recovered item of unknown origin is compared with a control item whose ori-

gin is known is generally performed through the derivation of a Bayes factor (in

the forensic context often referred as a likelihood ratio), a rigorous concept that

provides a balanced measure of the degree to which the evidence is capable of dis-

criminating among competing propositions that are suggested by opposing parties

at trial (Lindley, 1991). The use of this metric of probative value is largely sup-

ported by operational standards and recommendations in different forensic dis-

ciplines (ENFSI, 2015). A Bayes factor can also be assessed with reference to
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investigative settings, when no trace is available for comparative purposes. The

recovered evidence may be valuable to generate hypotheses and suggestions for

explanations in order to give assistance to investigative authorities.

Undoubtedly, the assessment of a Bayes factor may be a demanding task, es-

sentially because of the likely complexity of the scenario at hand and the possible

poor information at the forensic scientist’s disposal. Moreover, forensic labora-

tories have frequently access to equipment (e.g., scanning electronic microscope)

which can readily provide continuous multivariate data, and scientific evidence is

often presented in this form. Glass fragments that are searched and recovered at a

crime scene, or drug samples that are seized since under suspicious of containing

illicit substances may be analyzed and compared on the basis of a profile of chem-

ical compounds as well as physical characteristics. Multivariate data also arise in

other domains of forensic science, such as handwriting examination. A handwrit-

ten character can in fact be described by means of several variables, such as the

width, the height, the surface, the orientation of the strokes, or by Fourier descrip-

tors as it will be outlined later. This has originated an abundance of databases that

often present a complex dependence structure with a large number of variables

and multiple sources of variation.

It must be emphasized that the use of multivariate statistical techniques in

forensic science applications has been often criticized because of the lack of back-

ground data from which to estimate parameters (e.g., the first and second order

moments within- and between-sources) and several attempts have been proposed

to lead a dimensionality reduction. For example, score-based models have been

proposed with the aim of reducing multivariate information to a univariate dis-

tance or similarity score between items (see e.g. Bolck et al. (2015) for forensic

MDMA comparison). Alternatively, the multivariate likelihood ratio can be sim-

plified to a product of univariate likelihood ratios whenever variables can be taken

as independent. However, this hypothesis is seldom warranted, and a likelihood

ratio for multivariate data accounting for correlation between variables and possi-

bly several levels of variation must be provided.

A graphical probability environment was proposed by Aitken et al. (2006)

to reduce a dataset with a considerable number of variables to a product of mu-

tually independent sets of reduced dimensions. In this way, the number of pa-

rameters are considerably reduced whilst retaining the dependence structure, not

recognized in a model which assumes full independence. Clearly, any statistical

methodology which leads to reduction of the multivariate structure to fewer or

even only one dimension will need careful justification in order to avoid the chal-



The value of scientific evidence for forensic multivariate data 189

lenge of suppression of evidence. Bayesian multilevel models for the evaluation

of multivariate measurements on characteristics associated to questioned material

that are capable to deal with such constraints have been proposed, among others,

by Aitken and Lucy (2004) for the evaluation of scientific evidence that consists

in glass fragments, by Bozza et al. (2008) for handwriting examination, and by

Alberink et al. (2013) for comparison of ecstasy tablets on MDMA content.

Numerical procedures are often implemented to handle the complexity and to

compute the marginal likelihoods under competing propositions. This, along with

the acknowledgement of subjective evaluations that are unavoidably involved in

the Bayes factor assessment process, and sensitivity upon available measurements

or observations, has given rise to a large debate in the forensic community about

what should be the most appropriate ways to take charge of uncertainty while

presenting expressions of evidential value to a court of justice. These ideas will

be illustrated with reference to handwriting examination, a forensic discipline that

attracts nowadays considerable attention due to its uncertain status under new

admissibility standards.

2. Background data and models

Available background data may present increasing levels of complexity: obser-

vations can be collected in several groups, take for example single individuals in

a population of writers, glass fragments collected in a population of glass win-

dows or different plants in a population of Cannabis plants and so on. Consider

the case where observations are divided into m groups with several members for

each group. The data structure may suggest a two-level hierarchy, where the

hierarchical ordering takes into account two sources of variation: that between

measurements within the same source (the within-source variation), and that be-

tween sources (the between-source variation). For sake of illustration, imagine a

database collecting the handwriting features of a population of m writers with

several observations for each writer. The background data can be denoted as

xi j = (xi j1, . . . ,xi jp), where i = 1, . . . ,m denotes the number of groups (i.e., writ-

ers), j = 1, . . . ,ni denotes the available measurements for each writer and p is

the number of variables. A Bayesian statistical model can be introduced, with

f (xi j | ψi) measuring personal degree of belief in the data taking certain values

given the hypothetical information that ψi takes certain values, and π(ψi | Hk)

measuring the personal belief aboutψi prior to observing the data given the propo-

sition at hand.

The data structure may be far more complex, requiring an additional level

2. BACKGROUND DATA AND MODELS
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of variability alongside the levels above to take into account, for example, the

measurements error (i.e., the error related to the precision of the instrument). In

this way the hierarchical ordering can take into account three sources of variation:

that between replicate measurements on the same item, that between items within

the same group, and that between groups. Looking back at the previous example,

one may consider for each writer several measurements of characters of different

type.

A Bayesian multilevel model for the evaluation of transfer evidence for three-

level multivariate data has been proposed by Aitken et al. (2006) in a different

forensic domain, where the available database encompasses replicated measure-

ments of the elemental composition of several glass fragments originating from a

population of glass windows.

3. Probabilistic models for evaluative and investigative purposes

Suppose that evidentiary samples are collected by investigative authorities, and

that control samples are taken for comparative purposes. Let us denote the re-

covered and the control measurements by, respectively, y1 = (y11, . . . ,y1n1
) and

y2 = (y21, . . . ,y2n2
), where yi j = (yi j1, . . . ,yi jp), and n1(2), is the number of mea-

surements on the recovered(control) material. The distribution of the measure-

ments y1 and y2 on the recovered and the control items can be denoted by f (yi |ψi),

ψi = {θi,Wi}, where θi represents the mean vector within source i and Wi the

matrix of variances and covariances within source i.
The propositions of interest to the court may be the following:

Hp: The recovered (i.e., questioned) sample is from the same source as the con-

trol sample;

Hd : The recovered (i.e., questioned) sample is from a source that is different

from that of the control sample,

where the subscript p stands, usually, for the prosecution’s proposition, and the

subscript d stands for the defence proposition. Statistical methods are often used

to infer identity of a common source. Two fundamental ingredients are necessary

for the evaluation of findings in forensic science: the probability distribution of

the forensic results if proposition Hp is true, and the probability distribution of

those results if proposition Hd is true. The question of interest is: given which

of the competing propositions is the forensic result more reliable? The value of

the evidence y1 and y2 is the ratio of two probability distributions under the two

3. PROBABILISTIC MODELS FOR EVALUATIVE AND INVESTIGATI-
VE PURPOSES
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competing propositions:

LR =
f (y1,y2 | Hp)

f (y1,y2 | Hd)
. (1)

The assessment of the value of evidence is typically considered to be in the do-

main of the forensic scientist’s duties and the reported value of a likelihood ratio2

implies either an increase or a decrease in the prior odds once forensic findings are

taken into account. The likelihood ratio considers a particular case and answers

the post-data question about how the evidence in the particular case alters the odds

in favour of a particular proposition. In the numerator, where proposition Hp is as-

sumed to be true, the model’s parameters are assumed to be equal, say θ1 = θ2 = θ

and W1 = W2 = W and the parameter vector takes the form ψ = {θ,W}. The

marginal likelihood under proposition Hp can therefore be computed as:

f (y1,y2 | Hp) =
∫

f (y1,y2 |ψ,Hp)π(ψ | Hp)dψ. (2)

In the denominator, where proposition Hd is assumed to be true, the model’s pa-

rameters are not equal and the marginal likelihood can therefore be computed as:

f (y1,y2 |Hd)=
∫

f (y1 |ψ1,Hd)π(ψ1 |Hd)dψ1

∫
f (y2 |ψ2,Hd)π(ψ2 |Hd)dψ2.

(3)

The integrations above in (2) and (3) do not always have an analytical solu-

tion. Whenever the latter is not available, numerical procedures must be imple-

mented to handle the complexity and to compute the marginal likelihood under

the competing propositions.

Consider the two-level model that was proposed in Section 2. In some cases

data present regular characteristics (e.g., symmetry or unimodality) that can rea-

sonably be described using standard parametric models. If this happens, the vari-

ation at the two levels can be approximated by a normal distribution, that is one

can take Xi j ∼ N (θi,Wi), and θi ∼ N (µ,B) for the between-source variation,

where µ denotes the mean vector between sources and B denotes the matrix of

variances and covariances between sources. If the variation within sources Wi can

be reasonably assumed to be constant, that is W1 = W2 = · · · = Wm = W and is

2 The term likelihood ratio will be used as a synonym of Bayes factor, to include the wider use
of the first in forensic science applications, though it must be underlined that the Bayes factor
does not always simplify to a ratio of likelihoods.
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(4)
against

estimated from the available background data along with the mean vector µ and

the covariance matrix B between sources3, the integrations above have an analyt-

ical solution4 and it can be shown with some effort that the value of the evidence

becomes the ratio of

Nevertheless, there may often be practical situations where observations or

measurements do not have such regular characteristics that make it suitable to

use standard parametric models. The probability distribution can be estimated for

each of the competing propositions by means of kernel density estimation, which

is sensitive to multimodality and skewness and may provide a better representa-

tion of the available data. This approach is not novel in forensic science, and

several applications can be found. It was proposed, for example, by Aitken and

3 The within-source covariance matrix W, the mean vector between sources µ and the between-
source covariance matrix B can be estimated using the available backgr
ound data, as

4 An analytical solution is also available whenever an additional level of variation alongside the
levels above is considered (e.g., to take into account the measurement error), and it is supposed
normally distributed. See Aitken et al. (2006) for details.
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Lucy (2004) in the context of elemental composition of glass fragments, where

the assumption of normality between sources was relaxed by introducing a kernel

density estimate. Note that whenever the kernel density function is assumed to be

normally distributed the integrations in (2) and (3) still have an analytical solution

(as it is given in Aitken and Lucy (2004)). In a different context, it was proposed

by Aitken and Taroni (2004) to classify banknotes as coming from drug trafficking

rather than from general circulation on the basis of detected traces of cocaine.

The assumption of constant variation within sources makes the task of com-

puting the marginal likelihoods in (2) and (3) much more feasible. However, while

for some kind of trace evidence this assumption is sound (e.g., when available

measurements consist of the elemental composition of glass fragments), there may

be found forensic domains where a constant variability can be hardly justified, as

it is the case for comparative handwriting to infer authorship in presence of ques-

tioned documents, since each writer can be characterized by a peculiar variation.

To model prior uncertainty about the within-source parameters, a semi-conjugate

model can be specified by choosing statistically independent prior distributions

for the mean vector θ, and for the matrix of variances and covariances W , that is

π(θ,W | Hk) = π(θ | Hk)π(W | Hk), (6)

where π(θ | Hk) is taken to be normal as before, and π(W | Hk) is taken of type

Wishart-inverse distribution (Gelman et al., 2014). This model was proposed by

Bozza et al. (2008) for a comparative handwriting scenario, with a Wishart-inverse

distribution centred at the common within-source covariance matrix that was es-

timated from the available population database. Note that in this case, the assess-

ment of the likelihood ratio for a given case is slightly more problematic, since

the marginal likelihoods under the competing propositions can not be computed

analytically. One may refer to numerical integration methods to provide an ap-

proximation of the marginal likelihood by means of numerical procedures. The

marginal likelihood can however be approximated by a direct application of Bayes

theorem (Chib and Jeliazkov, 2001), since it can be seen as the normalizing con-

stant of the posterior density π(ψ | y1,y2,Hk), that is

f (y1,y2 | Hk) =
f (y1,y2 |ψ,Hk)π(ψ | Hk)

π(ψ | y1,y2,Hk)
, k = {p,d}. (7)

This is valid for any parameter point ψ. So, if an opportune value ψ∗ of ψ is

chosen (e.g., the maximum likelihood estimate), the marginal likelihood can be
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approximated as

f̂ (y1,y2 | Hk) =
f (y1,y2 |ψ∗)π(ψ∗ | Hk)

π̂(ψ∗ | y1,y2,Hk)
, (8)

where the estimate of the posterior ordinate π̂(ψ∗ | y1,y2,Hk) can be obtained by

inspecting the output of a MCMC algorithm. This means that, starting from the

proposed semi-conjugate model, under the assumption of normality alongside the

levels above and non constant variability within sources, the posterior distribution

π(θ,W | y) = π(θ | y)π(W | θ,y) (9)

can be estimated at the parameter point ψ∗ = (θ∗,W ∗) by multiplying the esti-

mates of the posterior densities π̂(θ | y) and π̂(W | θ,y) at the selected points θ∗

and W ∗. The conditional densities being known (i.e., a normal distribution and

a Wishart-inverse distribution, respectively), a Gibbs-sampling algorithm can be

implemented and a Monte Carlo estimate of the posterior ordinates can be ob-

tained in a straightforward manner from the Gibbs output (Bozza et al., 2008).

While the use of likelihood ratios (or, Bayes factors) for evaluative purposes

is rather well established, presented and discussed in both theory and practice

(Aitken and Taroni, 2004), focus on investigative settings still remains rather be-

yond considerations. The likelihood ratio represents a coherent metric for evi-

dence assessment in general, but it can also be developed for investigative pur-

poses, that is when no immediate suspect is available for comparison purposes.

Investigative authorities (and ongoing investigations) may profit of valuable infor-

mations coming from the sole recovered items. For sake of illustration, consider

the forensic examination of anonymous handwritten documents, that regularly

arises in contexts where no suspect is available, and there will be no possibil-

ity for evaluating characteristics observed in a questioned document and those in

reference (or control) material as it would be the case in a conventional evalua-

tive scenario. Knowledge about the influence of demographic parameters, such as

gender or handedness, may provide useful assistance in reducing the population

of putative writers. Two propositions5 may be considered:

H1: the recovered item comes from population 1 (e.g., the population of left-

handed writers);

H2: the recovered item comes from population 2 (e.g., the population of right-

handed writers).

5 Note that these propositions need to be mutually exclusive, but not necessarily exhaustive.
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Imagine a database is available with the handwriting features of individuals

originating from population 1 and from population 2. A Bayesian statistical model

can be introduced as before, with f (xi j | ψk
i ,Hk) representing the distribution of

the available measurements given the hypothetical information that the item be-

longs to population k, and π(ψk
i | Hk) measuring prior beliefs about population

parameters ψk
i prior to observing data. Denote the available measurements on the

recovered item to be classified by y = (y1, . . . ,yn), where y j = (y j1, . . . ,y jp) and

y ∼ f (y |ψk,Hk). The posterior probability of the competing propositions can be

straightforwardly obtained by a direct application of Bayes theorem

Pr(Hk | y) =
Pr(Hk) f (y | Hk)

∑2
k=1 Pr(Hk) f (y | Hk)

,

where

f (y | Hk) =
∫

f (y |ψk,Hk)π(ψk | Hk)dψk (10)

is the predictive distribution.

The classification problem can be seen as a special case of decision making,

where decision di can be formalized as: the recovered item is to be classified
in population i. A coherent classification procedure would suggest to make the

decision di that allows to minimize the posterior expected loss, that is

min
i

EL(di) = ∑
k

L(di,Hk)Pr(Hk | y), (11)

where Pr(Hk | y) is the posterior probability of proposition Hk and L(di,Hk) repre-

sents the loss of classifying in population i (di) an item belonging to population k
(Hk), i � k. The loss is zero whenever a correct decision is taken (i.e., i = k). The

optimal decision is therefore to classify a recovered item in population 1 whenever

the expected loss of decision d1 is smaller than the expected loss of decision d2:

L(d1,H2)Pr(H2 | y)< L(d2,H1)Pr(H1 | y). (12)

Rearranging terms, and dividing both sides by the prior odds,

Pr(H1 | y)
Pr(H2 | y)

/
Pr(H1)

Pr(H2)
>

L(d1,H2)

L(d2,H1)
/

Pr(H1)

Pr(H2)
, (13)

one obtains a threshold for the interpretation of the Bayes factor: a recovered item

is classified in population 1(2) whenever the Bayes factor is larger(smaller) than
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the quantity at the right-hand side in (13). The advantage is that there is not only

a decision as to which population the recovered item can be classified, but also

through the Bayes factor there is a measure of the strength of the conclusion. This

classification criteria was proposed by Bozza et al. (2014) to classify two-class

Cannabis seedlings. The necessity to choose a prior probability for competing

propositions and a loss function to assess the undesirability of misclassification

may be felt as a struggling issue as there is not an ad-hoc recipe. Subjectivity do

often have a connotation of arbitrariness, and forensic science is not an exception.

Probabilities depend on one’s extent of knowledge, may change as the informa-

tions change and may vary amongst individuals, as well as there is not a ‘correct’

loss function, since each individual will have his own system of preferences. Per-

sonal degrees of belief also enter the enumeration of the Bayes factor through the

elicitation of the prior probability distributions. Finally, as it was highlighted for

the evaluative scenario, the assessment of a Bayes factor can be more or less fea-

sible depending on the specific setting of interest, as the integral in (10) may be

analytically intractable.

There is actually an ongoing discussion in the forensic community whether a

forensic scientist should report to the court a single value of the Bayes factor or

a range of values to acknowledge for uncertainty in its ratio assessment (Taroni

et al., 2015). It is not uncommon in fact to encounter forensic scientists who

argue the need to determine the probability distribution of a given expression of

evidential value, or to fit an interval on such an expression. These ideas will be

addressed in Section 4 with reference to a comparative handwriting scenario.

4. A CASE STUDY: LIKELIHOOD RATIO FOR ASSESSING HAND-
WRITING EVIDENCE

Handwriting examination involving questioned documents consists in describing

handwriting features, such as elements of style or elements of execution, and

studying their range of variation. Characterization of writing habits is largely

dependent on the experience of the document examiner, who usually evaluate the

handwriting features in a qualitative or subjective way. Various studies have al-

ready been undertaken to partially automate the analysis process and support the

examiner. Among these, an image analysis procedure has been developed and

tested by Marquis et al. (2005) to quantify and provide a global description of

handwriting features. According to the proposed technique, each contour loop

can be expressed by a set of p variables representing the first four pairs of Fourier

coefficients.

Suppose that an anonymous document is available for comparative purposes.
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A suspect is apprehended, and written material from this suspect is selected and

will be analyzed to infer common identity. A number n1 of measurements are per-

formed on the anonymous manuscript (these will be referred as recovered data).

A number n2 of measurements are performed on a manuscript originating from

the suspect (these will be referred as control data). For illustration, consider the

following two propositions of interest:

Hp: the suspect is the author of the manuscript;

Hd : the suspect is not the author of the manuscript, an unknown person is the

author of the manuscript.

Starting from the evidence, and assuming a two-level model as the one de-

fined above in Section 3 with the assumption of normality for both levels of vari-

ation and a Wishart-inverse distribution for the within-source variability, the like-

lihood ratio is computed as a ratio of two estimated marginal density ordinates as

in (8): one for the numerator, where proposition Hp is supposed to be true, and

one for the denominator, where proposition Hd is supposed to be true. Imagine

a value equal to, say, 125 is obtained, supporting hypothesis Hp. Such a value

is not substantially different from 120 or 130! What is the information that the

assessed number does really convey? Recalling one of the fundamental laws of

handwriting according to which no one writer writes the same word exactly the

same way twice (the so called within-writer variability), it may be observed that

the reported likelihood ratio is sensitive to the shape’s variability of handwritten

characters. So, to what extent can a forensic examiner rely upon a case-specific

likelihood ratio? To approach this question, one may consider the related ques-

tion: “How often may the document examiner obtain a likelihood ratio larger or

smaller than 1 for handwriting evidence originating from the same source?”. In

the same way, “How often may the document examiner obtain a likelihood ratio

smaller or larger than 1 whenever the questioned documents do not origin from

the alleged writer?”. To provide an answer, several pairs of observations for each

setting of interest (i.e., the competing propositions Hp and Hd) may be selected

from the background population6, and for every pair the likelihood ratio can be

6 The handwriting of 100 writers from the School of Criminal Justice of the University of
Lausanne was collected, and the contour shape of several characters was analyzed and
described by Fourier coefficients according to the methodology that was described in Marquis
et al. (2005). In other forensic domains, data can be compiled through practical experiments
because target materials and substances are easily available (Aitken and Lucy, 2004). Pairs
of observations can also be generated, e.g. in applications where the distribution of the source
features is known as for kinship identification scenario (Corradi and Ricciardi, 2013).
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assessed.

To test hypothesis Hp: the suspect is the author of the manuscript’, several

groups of measurements can be randomly selected from the same writer to act as

recovered and control data, and for each draw the likelihood ratio can be com-

puted. So, imagine for sake of illustration that a writer is to be selected from the

available database, denote it as writer 1 (w1), and that several draws of characters

of type a are extracted as it was previously described. Accordingly, the selected

measurements are randomly divided into two groups: values coming from the

first group are denoted as measurements from a recovered manuscript, whereas

values coming from the second group are denoted as measurements from a con-

trol sample. In the same way, a second writer is selected, denote it as writer 2
(w2), and again groups of measurements are randomly selected to act as recov-

ered and control data. Results are summarized in Figure 1, where the logarithm

of the likelihood ratios obtained in correspondence of one thousand of draws of

measurements of character a originating from w1 and w2 is displayed. The vari-

ability for each writer can be less or more pronounced, as one might reasonably

expect because of the non constant within-writers variability.

In the same way, to test hypothesis Hd : the suspect is not the author of the
manuscript, an unknown person is the author of the manuscript’, several groups

of measurements originating from different writers can be selected to act as re-

covered and control data, respectively. For sake of illustration, suppose that w1 is

selected to act as the author of the questioned anonymous manuscript, while w2 is

selected to act as the author of the control document: several draws are extracted

from each of them, and for each draw a likelihood ratio is assessed. Results are

summarized in Figure 2, where it is displayed the logarithm of the likelihood ra-

tios obtained in correspondence of one thousand of draws of characters a. Clearly,

one may expect a negative log-ikelihood ratio, though with a variable magnitude

according to the selected writers.

In Figure 2 there are also summarized the log likelihood ratios that can be

assessed whenever w2 is substituted by a third writer, w3, to act as the author of

the control document. The triplet was chosen for illustrative purposes because of

shape’s similarities between w1 and w3 (i.e., both presenting rounded characters),

and because of the pronounced dissimilarities between w1 and w2, the last one

being characterized by handwritten characters with substantial elongation toward

the right. Though this is only an example, it is interesting to observe that as the

separation between control and recovered measurements increases, the value of

the evidence decreases.
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Figure 1: Log-likelihood ratios for several draws of measurements of character a extracted
from writer 1 to act as control and recovered data (left); log-likelihood ratios for
several draws of measurements of character a extracted from writer 2 to act as

control and recovered data (right).
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A recovered anonymous document may also be used for investigative pur-

poses to reduce the pool of potential writers. Several draws may be taken from

each setting of interest (i.e., propositions H1 and H2) to infer the discriminative

capacity of the proposed approach. It must be said that the contour shape alone

appeared in general unable to infer the gender or the handedness of an anonymous

writer, with a non negligible percentage of misclassified that do not actually

allows to transpose the current methodology at an operational level (Taroni et al.,

2014). Still, the Bayesian approach offers a logical framework also for investiga-

tive settings, where no suspect is available for comparative purposes, though other

types of reference material may be needed to discriminate between populations of

interest.

5. Discussion and conclusions

Continuing developments in science and technology provide an increasing amount

of information at the forensic scientist’s disposal during criminal investigations

and it is fundamental that the evidential strength of available results is derived

reliably, so that the justice system can take advantage of this. The assessment

of value of scientific evidence requires probabilistic and statistical reasoning and

improved methods are necessary to deal with all sort of uncertainties and com-

plexities that are inevitably associated with forensic scenarios.

Simulation studies may be extremely valuable to inform the court about the

robustness of the proposed statistical methodologies. A ‘likelihood ratio distribu-

tion’ can be obtained when the analyzed findings come from the same source or

from different sources to quantify how often a likelihood ratio taking values in

a given range can be obtained. This would be valuable to quantify how often a

likelihood ratio points in the wrong direction (i.e., giving rise to false negatives or

false positives).

The assessment of the magnitude of false positives and false negatives for

a given setting may therefore be informative about the potential of misleading

evidence to investigate the discriminative capacity of the proposed methods with

respect to propositions at hand. Such information is obtainable before findings are

made and is independent of the observations made in a given case. The answers

to these questions are not of particular relevance for the evaluation of evidence in

a particular case. The fact that if one were to take another sample one’s resulting

marginal likelihood would be different, and the likelihood ratio too, is uncontro-

versial. However, this is of no detriment to the assessment of one single value

to report for the given scenario of interest. This is an objective assignment: two

5. DISCUSSION AND CONCLUSIONS



The value of scientific evidence for forensic multivariate data 201

forensic examiners with the same statistical model, the same prior probability dis-

tributions, and the same measurements, will provide the same value. Arguing

otherwise would bear the risk of embracing ideas that care about possible values

that have not actually been observed, which is in contradiction with the likelihood

principle according to which once data are observed, no other values matter, and

the hypothetical extreme values that might have been observed are irrelevant. Un-

doubtedly, the reported value is based on all available knowledge at a given instant

of time: there may be uncertainty because it may change, and not least because of

the complexity of the model that could make it necessary numerical procedures

(Alberink et al., 2013). The exploration of a MCMC output, for example, does not

provide a sample from a hypothetical likelihood ratio distribution. By treating the

resulting draws as single scores for the questions of interest would amount equat-

ing knowledge about the posterior distribution to knowledge about the marginal

likelihood the examiner is required to report.

To conclude, it may be felt that a likelihood ratio approach to measure the

value of evidence should only be restricted to forensic domains where a large

background information is available, as in DNA evidence. There are cases where

a limited knowledge about the type of evidence is available (Nordgaard and Ras-

musson, 2012), as in the handwriting scenario where a document examiner ob-

serves similarities and dissimilarities between a questioned document and refer-

ence material. The likelihood ratio may be hard to specify, and it will vary accord-

ing to available evidential value. This does not prevent scientists from mentioning

that their beliefs may be based on a limited amount of data. The scale of the

likelihood ratio may be inevitably rough and not sufficient to take a decision, nev-

ertheless the evidence may be quite compelling in support of one of the alternative

propositions.
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