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THE REASONING RULES OF (FORENSIC) SCIENCE
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Abstract. Probability theory can be interpreted as a system of rules for coherent behaviour
in un uncertain environment. Bayes’ theorem is a rule for making educated guesses and
learning from experience, and it is a fundamental tool of scientific reasoning. The odds form
of the theorem offers a way of measuring the relative weight of support given by evidence
to alternative hypotheses that fits very well with the main task of forensic science.
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1. PROBABILITY AS A LOGICAL CALCULUS

Forensic reasoning is a kind of scientific reasoning and it must follow the ‘good
rules’ of scientific method. The ‘scientific method’ is a qualified and systematic
extension of rational behaviour. In everyday life we have to cope with a complex
environment, and we are continuously required to make educated guesses, and
developing uncertain inferences, in order to act in a coherent way in that environment.
The Bayesian paradigm claims that the fundamental normative rule of uncertain
reasoning in everyday life, and in scientific practice, is Bayes’ theorem.

It is well known that the addition law of probability theory can be proved a
standard of coherence for the degrees of belief held by a person, by means of the
so-called Dutch Book theorem (Ramsey, 1931; de Finetti, 1937). From a subjective
Bayesian point of view, also the product rule is not a definition but a standard of
coherent reasoning under uncertainty, which can be as well justified by a synchronic
Dutch Book argument, in terms of conditional bets (de Finetti, 1937; Jeffrey, 1988
and 2004). Both are rules for combining sets of degrees of belief held by a person
at the same time, upon a given body of evidence.

The product rule immediately provides the way for updating a person’s
degrees of belief, when the body of evidence changes upon time, if the so-called
principle of conditionalization is accepted. The principle says that your new
subjective probability distribution Q, based on new evidence E, ought to be equal
to your old conditional probability distribution P given E, provided that P(E) > 0:
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Q(–) = P(– |E). (1)

Given that a Conditional Dutch Book theorem can be proved also for the principle
of conditionalization (Teller, 1973; Jeffrey, 1988; Skyrms, 1990), Bayesians accept
the principle as a rule of coherence reasoning under uncertainty.

The philosopher Richard Jeffrey (Jeffrey, 1983) has given a generalization of
the principle. Suppose that the new information E is not known with certainty, that
is, Q (E) ≠ P(E) and Q(E) < 1; then we can rewrite (1) as follows:
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Given that you can update Q(– & E ) in the same way, your new probability
distribution will be:

Q(–) = Q(– &E) + Q(–& E ). (4)

This generalization is the logical core of the updating algorithms implemented in
the inference engines of Bayesian networks (Taroni et al., 2006).

Bayes’ theorem is a straightforward consequence of the product rule and the
additivity rule and it provides the machinery that can put at work the principle of
conditionalization. It can be useful to write the theorem in the following way,
because it immediately captures the logical relationships between a given hypothesis
H and a body of evidence E (Polya, 1954):

P(H|E)P(E) = P(E|H)P(H). (5)
It can be easily seen that:
(i) the probability of the hypothesis H, upon knowledge of information E, usually

called its posterior probability, is greater than the probability of the same
hypothesis without knowledge of E, usually called its prior probability, if and
only if the likelihood of H given E, i.e. P(E|H), is greater than the absolute
probability of E;

(ii) in such a case, given that by convexity of probability measures it holds:

P(E| H )≤ P(E) < P(E|H) (6)

we see that evidence E supports hypothesis H if E is unexpected, or surprising,
unless H is true; and that, the less probable evidence E is, unless H is true, the
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more informative is E about H. Therefore, Bayesians agree with Karl Popper’s
recommendation that good tests of a scientific theory must look for improbable
predictions, unless the theory is true, and that the more improbable the prediction
is, the better the test (Popper, 1959);
(iii) Popper’s falsification rule is a particular case of Bayes’ theorem, that applies

when H implies E, because in that case P(E |H) = 0, and P(H|E ) = 0;

(iv) genuine empirical hypotheses H can never be verified, because P(H|E) = 1 if
and only if P(H) = P(E), but this cannot be the case if E is empirical evidence,
because there will be always a possible alternative explanation of an empirical

fact. Therefore, we must always allow for P(E| H ) > 0, even though we might
not be able to fully work out the alternative hypothesis and calculate the relative
likelihood. This ‘always possible’ alternative is what philosophers of science
sometimes call the ‘catch-all hypothesis’.

Fortunately, we need neither to calculate the likelihood of an unknown
hypothesis nor to estimate its prior probability, in order to be able to use Bayes’
theorem as a rule of inference.

2. THE BALANCE OF PROBABILITIES

Psychologists tell us that one of the more entrenched biases of common sense
reasoning is to focus on one single hypothesis, without taking into account
alternatives (Kahneman, 2011).  The main lesson philosophers and historians of
science have drawn by Thomas Kuhn’s The Structure of Scientific Revolution
(Kuhn, 1970), is that no scientific theory has been rejected simply because there
is some evidence which ‘falsifies’ it, but it is rejected only if an alternative is
available for explaining away the ‘anomalies’. Bayesian epistemology is able to
provide a general account of scientific practice (Bovens and Hartmann, 2003;
Howson and Urbach, 1996), and to teach common sense reasoning that a correct
assessment of evidence always requires a comparison of at least two competing
hypotheses.

Suppose we consider testing two mutually exclusive, but not exhaustive,
hypotheses as, for example, two simple statistical hypotheses (θ = θ0; θ = θ1): the
comparison makes use of the odds form of Bayes’ theorem. The prior odds on θ0
against θ1, based on the evidence x we have before the test, are:
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The posterior odds on θ0 against θ1, based on the observation of the result y of the
test, are given by the formula:
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The ratio P(y| θ0, x)/ P(y|θ1, x) is the likelihood ratio and it is called the Bayes factor:
it is the measure of the relative strength of support which evidence y gives to θ0
against θ1, given evidence x. Given the assumption, usually made for probabilistic
models,  that all the observations are independent, conditional on each particular
value of the parameter θ, formula (8) simplifies in:
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No ‘catch-all hypothesis’ appears in (9), and we have all the data to make the
necessary calculations.

The price we have to pay is that no quantitative posterior probabilities can be
calculated for θ0 and θ1, when they are not exhaustive hypotheses.

“In fact, most applications of Bayesian standpoint in everyday life, in scientific
guessing, and often also in statistics, do not require any mathematical tool nor
numerical evaluations of probabilities; a qualitative adjustment of beliefs to
changes in the relevant information is all that may be meaningfully performed”
(de Finetti, 1974, p. 117).

Suppose that, prior to the observation of evidence y, you believe that hypothesis θ0
is more credible than hypothesis θ1. Then, it is easy to see from (9) that the posterior
probability of θ1 will be greater than the posterior probability of θ0, that is, your
preferences should be changed from θ0 to θ1, if and only if the likelihood ratio of
θ1 to θ0 is greater than the prior odds of θ0 against θ1 (Salmon, 1990):
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In case where we can have a list of exclusive and exhaustive hypotheses, a
decision-theoretic approach can easily make use of the odds form of Bayes’
theorem. Suppose, for sake of simplicity, that there are only two exhaustive
hypotheses θ0 to θ1, and that a loss function L can be estimated, so that a ‘loss’ is
incurred when the false hypothesis is chosen, and there is no ‘loss’ when the true
hypothesis is chosen.
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Table 1: A decision matrix

action θθθθθ0 θθθθθ1

a0: choosing θ0 0 L01

a1: choosing θ1 L10 0

The expected loss EL of choosing hypothesis θi on data x, y, is:

EL(ai |x,y) = Lij (θj |x,y) (11)

and the rational decision is to take the action with the lowest expected loss, decision
that involves a comparison of posterior odds with the ‘losses’ possibly incurred in
choosing the wrong hypothesis. Then, hypothesis θ1 will be preferred to hypothesis
θ0 if and only if:
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that is:
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Rewriting (13), we obtain that θ1 will be preferred to θ0 if and only if:
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The loss ratio in (13) fixes a threshold for posterior odds, also called the posterior
odds cutoff, and we can see that (10) is the particular case where the loss is
symmetric: L10 = L01.

3. THE BALANCE OF JUSTICE

According to Bayesian epistemology, probability always refers to a single event,
and there is only one way of reasoning for scientific theories in general, statistical
hypotheses, and forensic hypotheses. The task of forensic scientists is to estimate
the probabilities of the occurrence of unique events and to assess evidence E on
the light of two alternative hypotheses, the prosecution’s hypothesis Hp and the
hypothesis proposed by the defence Hd. Therefore, what the scientist is asked to
evaluate is measured by the likelihood ratio of the prosecution hypothesis:
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A useful function of the likelihood ratio is its logarithm that has been called
by Good the weight of evidence (Good 1950; 1988) because in such a way the
relative support provided by evidence enjoys the additive property required by an
appropriate information function. Posterior odds
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can be rewritten as
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The weight of evidence associated with the likelihood ratio is the additive change
to the prior odds, due to evidence E only. Odds vary from 0 to ∞, while their
logarithms vary from -∞ to + ∞.

The idea of using the log odds as a measure of the ‘weight of evidence’ is due
to Peirce (Peirce, 1878), but his definition applies to the special case where the prior
odds are 1, i.e. P(H) = P( H ) = 0.5; in such a case, the prior log odds are 0 and the
weight of evidence is equal to the posterior log odds. A similar notion of the ‘weight
of argument’ was put forward by Keynes to indicate the absolute amount of relevant
evidence, independently whether or not this evidence is positively, or negatively
relevant, i.e., whether or not it raises the probability of a hypothesis. The mathematical
properties this measure was supposed to satisfy (Keynes, 1921, pp. 78-79, 84)
mixing together two different modern concepts of information (Hilpinen, 1970),
namely, the concept of semantical information (Popper, 1959) which refers to the
logical content of a proposition, and the concept of entropy used in communication
theory (Shannon and Weaver, 1949), which refers to the expected information.

The concept of entropy has been used to measure the amount of expected
information before an experiment (Lindley, 1956), allowing the calculation of the
expected value of information. Consider again Table 1 above: the best action ai is
that one for which the expected loss

L P
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is minimized. Now, if you know the true hypothesis, the action is that one with the
smallest loss in the column corresponding to the true hypothesis. Therefore, to
calculate the expected loss with perfect information you must multiply the minimum
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loss for each hypothesis by the probability of that hypothesis, and sum all these
products:

min
i
L P

ij jj ( ) ( )=∑ θ
1

2
. (19)

Before knowing which hypothesis is true, you would have chosen an action
according to formula (18): therefore, the difference between (18) and (19)
measures the reduction of the expected loss or, equivalently, the expected value of
perfect information. Notice that this measure satisfies one of the desiderata of
Keynes’ ‘weight’, namely, that an increase in the relevant evidence available is
positive, independently from the fact that probability is raised or lowered. Indeed,
the expected value of perfect information is always greater than zero, because,
whatever action is taken without perfect information, the value of (18) will be
greater than the value of (19), since every loss Lij in the former is replaced by a loss
(miniLij) in the latter, which cannot be greater.

The problem of the ‘catch-all hypothesis’ does exist, in principle, also for the
evaluation of forensic evidence, for there will be always many hypotheses available
to explain the occurrence of empirical facts as the production of physical traces
as, for example, blood stain on the ground. It is true that a proposition like ‘the
suspect did not commit the fact’ is the logical negation of the basic prosecution’s
proposition, but in order to be able to evaluate likelihood ratios more specific
propositions are needed. In legal settings the probability of the ‘catch-all hypothesis’
can be considered so low that the prosecution and the defense hypotheses can be
safely taken as if they were exhaustive, and on that assumption, and only on that
assumption, we are allowed to pass from likelihood ratios and posterior odds to
posterior probabilities. In practice, a comparative evaluation of odds is what can
be reasonably done.

“The aspiration of the legal system is to approach an assessment of odds.
The means by which this is done in the vast majority of cases is to consider
the two parties’ respective hypotheses. It can be shown that a good
approximation of the probability of a hypothesis can usually be attained by
comparing it with the next most likely hypothesis. On the assumption that the
two most likely hypotheses in a legal case are those advanced by the respective
parties, this is what the legal system does” (Robertson and Vignaux, 1993, pp.
471-472).

If we apply the odds form of Bayes’ theorem to the two parties’ hypotheses
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we can realize that our legal system requires that, in tort law, the prior odds must
be 1: thus, in order to give a verdict for the plaintiff, it is enough that P(E|Hp) >
P(E|Hd) (the preponderance of evidence standard of proof). But in criminal law, our
legal system requires that the prior odds of Hd against Hp are extremely high and
that posterior odds must be completely outbalanced to give a verdict for the
prosecution (the beyond any reasonable doubt standard of proof): thus, the
likelihood ratio P(E|Hp)/P(E|Hd) must be, accordingly, extremely high.
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